(Pages : 3) P - 5286

Reg. No.	:	
Name :		

Second Semester M.Sc. Degree Examination, September 2022 Chemistry / Analytical Chemistry/Polymer Chemistry CH/CL/PC 223 – PHYSICAL CHEMISTRY - II (2020 Admission Onwards)

Time: 3 Hours Max. Marks: 75

SECTION - A

Answer **two** sub questions among (a) (b) and (c) from each question each sub question carries **2** Marks

- 1. (a) What are spherical harmonics?
 - (b) Distinguish between radial and angular distribution functions
 - (c) Discuss Pauli's Anti-symmetric principle.
- 2. (a) Give any one application of stark effect in rotational spectrum
 - (b) For polyatomic molecules like OCS or NH₃ knowledge of one moment of inertia is insufficient to deduce the bond length and bond angles from line spacing in the Rotational spectra, how will you overcome this difficulty?
 - (c) What is the condition for a molecule to give rise to rotational Raman scattering?
- 3. (a) What is the origin of residual entropy?
 - (b) Discuss the concept of ensemble.
 - (c) State the principle of equi-partition of energy?

- 4. (a) Distinguish between Fermions and Bosons
 - (b) What is Dulong and Petit's Law?
 - (c) Discuss the anomalous heat capacity of hydrogen.
- 5. (a) What are the significance of Tafel plot?
 - (b) What is over voltage? What is its application?
 - (c) What are fuel cells? What are its uses?

 $(10 \times 2 = 20 \text{ Marks})$

SECTION - B

Answer either (a) or (b) from each question, each sub question carries 5 marks.

- 6. (a) Discuss the spin orbital coupling.
 - (b) Discuss the separation of variables in the wave equation of Hydrogen like systems.
- 7. (a) Give a brief account on P,Q, and R branches of vibrational rotational spectrum
 - (b) Briefly explain Mutual exclusion principle
- 8. (a) Derive Sachur Tetrode relation using Partition function
 - (b) Derive the relation to show how thermodynamic functions internal energy and entropy related to partition function?
- 9. (a) Discuss Debye theory of specific heat capacity of solids
 - (b) Deduce Fermi Dirac Distribution Law.
- 10. (a) Discuss the principle and applications of polarography.
 - (b) Briefly explain Debye-Falkenhagen effect.

 $(5 \times 5 = 25 \text{ Marks})$

2 **P – 5286**

SECTION - C

Answer any three questions, each question carries 10 Marks

- 11. Elaborate Vector atom model.
- 12. (a) Discuss the fundamentals of rotational spectroscopy and how it is used in the elucidation of molecular structure.
 - (b) The rotational spectrum of H³⁵ Cl has lines equally separated by 6.26 x 10¹¹ Hz. Calculate the bond length of H³⁵ Cl. (6+4)
- 13. Derive the expression for Maxwell Boltzmann distribution of particles
- 14. Discuss Einstein theory of heat capacity of solids. What are the limitations of Einstein's theory of heat capacity?
- 15. Derive Debye- Huckel Onsager equation and discuss.

 $(3 \times 10 = 30 \text{ Marks})$

3 **P - 5286**