(Pages: 3)

Reg. No. :

Name :

First Semester M.Sc. Degree Examination, August 2021

Chemistry/Analytical Chemistry/Polymer Chemistry

CH/CI/PC 213 : PHYSICAL CHEMISTRY – I

(2020 Admission)

Time : 3 Hours

Max. Marks: 75

SECTION - A

Answer **any two** among (a), (b) and (c) from **each** question. **Each** sub question carries **2** marks.

- 1. (a) Determine the average value of linear momentum for particle in a one dimensional box.
 - (b) What are well behaved wave functions? Illustrate with examples.
 - (c) Define orthonormal functions.
- 2. (a) What are block factored matrices?
 - (b) Explain reducible and irreducible representation.
 - (c) Cyclic groups are abelian. Explain.
- 3. (a) Differentiate between associative and dissociative chemisorption.
 - (b) What is the condition under which BET isotherm approximates Langmiur adsorption isotherm?
 - (c) Explain with one example anionic surfactants.

L – 6350

- 4. (a) Discuss a method *for* the determination of partial molar properties.
 - (b) Give a short note on temperature dependence of free energy.
 - (c) Discuss a method for the determination of excess volume.
- 5. (a) How does primary salt effect differ from secondary salt effect?
 - (b) Differentiate between vantHoff intermediate and Arrhenius intermediate.
 - (c) What happens to the overall reaction rate when iodine is replaced by bromine in the halogenation of acetone in aqueous solution?

 $(10 \times 2 = 20 \text{ Marks})$

SECTION – B

Answer (a) or (b) of **each** question and **each** question carries **5** marks.

- 6. (a) Discuss the transformational properties of atomic orbitals.
 - (b) Construct group multiplication table for the symmetry operations of NH_3 molecule.
- 7. (a) Discuss the Langmiur-Hinshelwood mechanism.
 - (b) A monolayer of N₂ molecule (effective area 0.162 nm²) is adsorbed on the surface of 1 g of an Fe/Al₂O₃ catalyst at 77 K, the boiling point of liquid nitrogen occupies 2.85 cm⁻³ at 0°C and 1 atm pressure. What is the surface area of the catalyst?
- 8. (a) Show that \hat{L}^2 and \hat{L}_x commute.
 - (b) Derive time dependent Schrodinger equation.
- 9. (a) Derive Gibbs-Helmoftz equation. Give any two applications of the equation.
 - (b) Steam is condensed at 100°C and the water is cooled to 0°C *and* frozen to ice. What is the molar entropy change of the water? Consider that the average specific heat of liquid water is 4.2 J K⁻¹ g⁻¹. The enthalpy of vaporisation at the boiling point and the enthalpy of fusion at the freezing point are 2258.1 and 333.S J g⁻¹, respectively.

- 10. (a) Calculate the specific reaction rate *k* at 556°C for the reaction : $2HI \rightarrow H_2 + I_2$ The activation energy for the reaction is 44000cals: collision diameter is 3.5×10^{-8} .
 - (b) Briefly describe the flash photolysis method for studying fast reactions.

(5 × 5 = 25 Marks)

SECTION – C

Answer **any three** questions and **each** question carries **10** marks.

- 11. Deduce hybrid orbitals of BF_3 and PCI_5 molecules using group theoretical treatment.
- 12. (a) Explain the BET theory of adsorption.
 - (b) Discuss the use of Langmuir and BET isotherms for surface area determination.
- 13. Obtain the allowed eigen states and energies of a particle constrained to move within the boundary of a three-dimensional box.
- 14. What is fugacity? Derive a relationship between fugacity and pressure. Discuss the method of determination of fugacity of a real gas.
- 15. Describe the Hinshelwood theory of branching chain reaction. Explain the lower and upper explosion limits with reference to the kinetic expression.

$(3 \times 10 = 30 \text{ Marks})$