

University of Kerala

University of Kerala - Four Year Under Graduate Programme (UOK-FYUGP)

Syllabus for Bachelor of Science in **BIOTECHNOLOGY**

2024 April

Aim and objective

The Four Year Degree Programme (FYUGP) in **b**iotechnology as one of the core subjects is designed to develop a scientific temperament to find out technological interface in modern areas of biotechnology to achieve its goal at applied level. It will help the students to become critical and curious in their outlook about modern Biotechnology. The courses are designed to impart the essential basics in biotechnology as well as its advanced fields.

The various courses in the programme is aimed to develop proficiency in the theory as well as practical experiments to achieve the goal of this course in applied as well as research level. The course structure will encompass usage of common equipments, laboratory experiments, individual or group projects along with case study reports and preparation of research proposals at advanced level to exploit the cognitive level of students at its maximum heights. The students will be equipped with knowledge in the modern areas of biotechnology and its application in medical science, agriculture, industry, proteomics, genomics, bioinformatics, nanobiotechnology etc. Apart from understanding biotechnology and its potential in developing the nation, it will create awareness about the socio, ethical and environmental aspects of the course also. This will help in eliminating public fear about the contribution of biotechnology and confusion of this subject at applied levels. Students, who pursue thisprogramme pass out successfully, will surely have an urge to continue higher studies in biotechnology and potential to explore industrial areas to achieve significantly in their career development.

Graduate Attributes

Graduate attributes bridge the gap between academia and the real world, fostering lifelong learning and meaningful contributions. They denote the skills, competencies and high-level qualities that a student should acquire during their university education. Apart from gathering content knowledge, these attributes go beyond the assimilation of information to its application in various contexts throughout a graduate's life. It aims in inculcating the art of critical thinking, problem solving, professionalism, leadership readiness, teamwork, communication skills and intellectual breadth of knowledge. The University of Kerala envisages to pave the path in guiding the student's journey to shape these attributes uniquely, making them integral to personal growth and success in various spheres of life. The University strives to ensure that these graduate attributes are not just checkboxes, but they play a pivotal role in shaping the students into capable, compassionate and responsible individuals with a high degree of social responsibility.

Programme Outcomes (PO)

No.	Programme Outcomes (POs)
PO- 1	 Critical thinking analyze information objectively and make a reasoned judgment draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions identify logical flaws in the arguments of others evaluate data, facts, observable phenomena, and research findings to draw valid and relevant results that are domain-specific
PO- 2	 Complex problem-solving solve different kinds of problems in familiar and no-familiar contexts and apply the learning to real-life situations analyze a problem, generate and implement a solution and to assess the success of the plan understand how the solution will affect both the people involved and the surrounding environment
PO- 3	 Creativity produce or develop original work, theories and techniques think in multiple ways for making connections between seemingly unrelated concepts or phenomena add a unique perspective or improve existing ideas or solutions generate, develop and express original ideas that are useful or have values
PO- 4	 Communication skills convey or share ideas or feelings effectively use words in delivering the intended message with utmost clarity engage the audience effectively be a good listener who are able to understand, respond and empathize with the speaker confidently share views and express himself/herself
PO- 5	 Leadership qualities work effectively and lead respectfully with diverse teams build a team working towards a common goal motivate a group of people and make them achieve the best possible solution. help and support others in their difficult times to tide over the adverse situations with courage

PO- 6	 Learning 'how to learn' skills acquire new knowledge and skills, including 'learning how to learn skills, that are necessary for pursuing learning activities throughout life, through self-paced and self-directed learning work independently, identify appropriate resources required for further learning acquire organizational skills and time management to set self-defined goals and targets with timelines inculcate a healthy attitude to be a lifelong learner
PO-	Digital and technological skills
7	• use ICT in a variety of learning and work situations, access, evaluate,
	 and use a variety of relevant information sources use appropriate software for analysis of data
	 use appropriate software for analysis of data understand the pitfalls in the digital world and keep safe from them
PO-	Value inculcation
8	 embrace and practice constitutional, humanistic, ethical, and moral values in life including universal human values of truth, righteous conduct, peace, love, nonviolence, scientific temper, citizenship values formulate a position/argument about an ethical issue from multiple perspectives identify ethical issues related to work, and follow ethical practices, including avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data, or committing plagiarism, and adhering to intellectual property rights adopt an objective, unbiased, and truthful actions in all aspects of work

Program Specific Outcomes (PSO)

After successfully completing the course students will be able to:-

Programme Specific Outcomes (PSO)

Upon completion of the programme the graduate will be able to

No.	РО	PO No.
PSO- 1	Develop basic understanding of the various streams of biotechnology. Apply the knowledge in the modern areas of biotechnology such as medical science, environment, agriculture, industry, proteomics, genomics, computational biology, bioinformatics, nanobiotechnology etc.	
PSO- 2	Understand biotechnology and its power to develop scientific temperament, ethical and social responsibilities in students.	
PSO- 3	As biotechnology is an interdisciplinary course students acquire technological skilfulness by connecting disciplinary and interdisciplinary aspects of Biotechnology. Student project helps in creating analytical thinking and interpreting the inference. Enhance practical skills and competency in students to conduct experiments in Biotechnology	
PSO4	Pursue higher studies in Biotechnology and contribute significantly in its development. Inculcate skill to organize scientific events and effective communication. Ascertain their area of interest in research	
PSO5	Be able to address challenges in industrial and research areas with socio- ethical responsibilities. Inculcate entrepreneurial skills to explore possibilities in Biotechnology with social outlook	

The University of Kerala FYUGP has a student centric approach in which the student can choose their pathway for learning. On successful attainment of minimum credits of 133 in a three year period, a student shall be awarded an Undergraduate Degree. Ina four year period, the student can successfully attain 177 credits and shall be awarded with either Undergarduate Honours Degree or Undergraduate Honours with Research Degree. The student can acquire credits through the following categories of courses.

- 1. Discipline Specific Core courses(DSC)
- 2. Discipline Specific Elective Courses)DSE)
- 3. General Foundation Courses 1.Multidisciplinary courses(MDC) Ability Enhancement course (AEC) Value addition course(VAC) Skill enhancement courses(SEC)

DSC courses are the core credit courses in a particular discipline. Student may choose DSC courses as their major or Minor course of study

Credit means the value assigned to a course which indicate the level of instruction. One hour lecturer per week equals 1 credit, 2 hours practical class per week equals 1 credit

Students who secure at least 75% of marks in all six semesters can choose Under graduate Honours with Research stream in the fourth year.

It is mandatory for all the students who enrol for a four year UG programme to acquire 39 credit from 13 general foundation courses. It should be completed within first three years of FYUGP.

The various courses and its corresponding credits are depicted in the following table.

Summary of courses

SI	Subject Specific	study components	credits/	Theory			
No	Coded		course	hours/tu	Mode of Study	Practical	
				torial week		Essential experiments/ week	Individua l/Group work
							/week
. –	MESTER I						
Disc		100-199 Level-A1(P)					
1	UK1DSCBIT100	Essentials of Biotechnology	<mark>4</mark>	3	Offline	1	1
2	UK1DSCBIT101	Environmental Studies	4	3	Offline	1	1
3	UK1DSCBIT102	IT for Biological science	4	3	Offline	1	1
4	UK1DSCBIT103	Fundamentals of Biotechnology	4	3	Offline	1	1
5	UK1DSCBIT104	Food and nutrition	4	3	Offline	1	1
6	UK1DSCBIT105	Chemistry for life sciences-I	4	3	offline	1	1
Mul	tidisciplinary Cours	es 100-199		•			
1	UK1MDCBIT100	Emerging pandemics & infectious diseases	3	3	Offline	-	-
2	UK1MDCBIT101	Innovations in Biotechnology	3	3	Offline	8	•
3	UK1MDCBIT102	Nutrition and Health	3	3	Offline	-	-
SE]	MESTER 2-A2(I	D)					
Disc	ipline Specific Core	100-199 Level					
1	UK2DSCBIT106	Biomolecules	4	3	Offline	1	1
2	UK2DSCBIT107	Elements of biology	4	3	Offline	1	1
3	UK2DSCBIT108	Chemistry for life sciences-II	4	3	Offline	1	1
4	UK2DSCBIT109	Fundamentals of Microbiology	4	3	Offline	1	1
<mark>5</mark>	UK2DSCBIT110	Basics of Cell biology	<mark>4</mark>	<mark>3</mark>	Offline	1	1
6	UK2DSCBIT111	Environmental microbiology, biodiversity and conservation	4	3	Offline	1	1

1	CK4VACDI1201	Practices and Quality	9	2	Omme		•
Valu 1	e Added Courses 20 UK4VACBIT201	Good Laboratory	3	3	Offline		
		Microbial Metabolism					
2	UK4DSEBIT205	Bioinformatics	4	3	Offline	1	1
1	UK4DSEBIT204		<mark>4</mark>	<mark>3</mark>	Offline	1	1
Disc		ve courses 200-299, DSE	2				<u> </u>
•	UK4DSCBIT209	Energetics					1
4		Biology Metabolism and	4	3	Offline	1	1
3	UK4DSCBIT208	Developmental Biology	4	3	Offline	1	1
2	UK4DSCBIT207	Molecular Biology	<mark>4</mark>	3	Offline	1	1
	UK4DSCBIT206	Genetics				1	1
1		Cell biology &),A3(F)	3	Offline	1	1
		•e 200-299 Level A4(P) A5 (P)				
SF	MESTER 4	Biosafety		-			•
1	UK3VACBIT200	IPR,Bioethics and	3	3	Offline	_	
Valı	 ie Added Courses 20						
		interactions and cell signalling					
4	UK3DSEBIT203	Biomolecular	4	4	offline		
		Biotechnology					
5		marine		–			
2	UK3DSEBIT201 UK3DSEBIT202	Introduction to	4	4	Offline		
2	UK3DSEBIT201	instrumentation Enzyme engineering	4	4	offline		
1	UK3DSEBIT200	Biophysics and	<mark>4</mark>	<mark>4</mark>	Offline		•
		ve courses 200-299 DSE					
6	UK3DSCBIT205	Animal Physiology	4	3	Offline	1	1
5	UK3DSCBIT204	plant physiology	4	3	Offline	1	1
4	UK3DSCBIT203	Microbial Metabolism	4	3	Offline	1	1
3	UK3DSCBIT202	Basics of Enzymology	4	3	Offline	1	1
2	UK3DSCBIT200	Microbiology	4	3	Offline	1	1
1	UK3DSCBIT200	Biomolecules and metabolism	4	3	Offline	1	1
	cipline Specific Cor	e 200-299 Level A3(P)			0.001	1	
	MESTER 3						
~-		management					
3	UK2MDCBIT105	Life style disease and	3	3	Offline	-	-
		quality management					
<u>~</u>	OK2MDCD11104	preservation and	2	2	Omme		•
1 2	UK2MDCBIT103	Food safety,	3	3	Offline		-
	tidisciplinary Course	es 100-199 Biofuel technology	3	3	Offline	-	
\/ ч	tidiaainlinan O	Biomathematics			NPTEL		
	1	D' (1 /	4	4	Online-		

		Control in					
		Biotechnology					
2		Environmental	3	3	Offline		
2		Monitoring and	5	5	Onnic	-	-
	UK4VACBIT202	Assessment					
Skill	Enhancement Cou	rses 200-299					
1	UK4SECBIT200	Bioassessment and	3	3	Offline	-	-
		Biomonitoring					
2	UK4SECBIT201	Basics of	<mark>3</mark>	<mark>3</mark>	Offline	•	•
		phytochemistry					
		and medicinal plant-					
TITZ		based industry					
		mer Inernship -3 credi	t				
SE	MESTER 5						
Disc	ipline Specific Co	re Level 300-399- A6(P	P),A7,A	8			
1		Recombinant DNA	4	<mark>3</mark>	Offline	1	1
	UK5DSCBIT300	technology	_	_		_	_
2		Food and Industrial	<mark>4</mark>	<mark>4</mark>	Offline	-	-
	UK5DSCBIT301	Biotechnology					
<mark>3</mark>	UK5DSCBIT302	Immunology	4	4	Offline		
		Ethnobotany and	4	3	Offline	1	1
D '	UK5DSCBIT303	medicinal botany	12(D) D				
	<u> </u>	ive courses 300-399, DSE	1		ca.		
1	UK5DSEBIT300	Genomics and	4	4	offline		-
2	UK5DSEBIT301	proteomics Molecular diagnostics	4	3	Offline	1	1
<u>2</u> 3	UK5DSEBIT302	Wolecular diagnostics	4 4	3	Offline	1	1
J	OKJDSEDI 1502	Nanobiotechnology	-	2	Omme	-	-
4	UK5DSEBIT303	67	4	3	Offline	1	1
•		Cancer biology		5		-	-
5	UK5DSEBIT304		4	3	Offline	1	1
		Microbial metabolism					
6			4	3	Offline	1	1
	UK5DSEBIT305	General virology					
7	LIKEDGEDIT20(E 1	4	3	Offline	1	1
0	UK5DSEBIT306	Food microbiology	4	2	Offline	1	1
8	UK5DSEBIT307	Marine biotechnology	4	3	Olline	1	1
9		Agriculture	4	3	Offline	1	1
,	UK5DSEBIT308	biotechnology	'	5			1
10		Microbial diversity	4	3	Offline	1	1
-	UK5DSEBIT309	and phytopathology		-			
11		Pharmaceutica	4	3	Offline	1	1
		lbiotechnology					
	UK5DSEBIT310						
Skill	enhancement Cour						
1		Plant Tissue Culture	3	3	Offline	-	-
	UK5SECBIT300	Entrepreneurship					
2	UK5SECBIT301	Entrepreneurship in Biotechnology	3	3	Offline		•
SE	MESTER 6						

Disc	ipline Specific Cor	re Level 300-399- A9(1	P),A10,A1	1			
1	UK6DSCBIT304	Animal Biotechnology	<mark>4</mark>	<mark>4</mark>	Offline	-	
2	UK6DSCBIT305	Plant Biotechnology	4	<mark>3</mark>	Offline	1	1
<mark>3</mark>		Environmental	<mark>4</mark>	<mark>4</mark>	Offline	-	
	UK6DSCBIT306	Biotechnology					
	pline Specific Elect	ive courses 300-399, DSE					
1		Industrial Regulatory	4	3	Offline	1	1
	UK6DSEBIT311	Affairs					
2		Food safety,	4	3	Offline	1	1
		Preservation and					
	UK6DSEBIT312	Quality management					
3	UK6DSEBIT313	Microbiome Studies	4	3	Offline	1	1
4			4	4	Offline		
4	UK6DSEBIT314	Microbial metabolites	4	4	Onnne	-	-
5	UK6DSEBIT315		4	4	Offline		
6	UKODSEBIISIS	Cancer therapeutics	4	4	Offline	-	-
0	UK6DSEBIT316	Tumour	4	3	Onnie	1	1
7	UKODSEDIISIO	immunotherapy	4	4	Offline		
/		Pharmacogenomics and	4	4	Onnie	-	-
	UK6DSEBIT317	Pharmacovigilence					
8	UK6DSEBIT318	Pharmabiologics	4	3	Offline	1	1
9	UK6DSEBIT319	Marine biodiversity	4	4	offline	-	-
10	OKODSEDITISTY	Marine natural	4	4	offline		
10	UK6DSEBIT320	products	- -	T	omme		
11	UK0DSEDI1520	Marine	4	3	Offline	1	1
11	UK6DSEBIT321	bioremediation	- -	5	Omme	1	1
12	UK6DSEBIT322	Vaccine technology	4	4	offline	-	-
12	ORODSEDIT522	Advanced studies in	4	3	Offline	1	1
15	UK6DSEBIT323	antivirals		5	omme	1	1
14	CIRODOLDI1323	Advanced food	4	4	offline	_	_
		preservation		•			
	UK6DSEBIT324	technology					
15	UK6DSEBIT325	Functional foods,	4	4	Offline	-	_
		Neutraceuticals and					
		Neutrigenomics					
16	UK6DSEBIT326	Datascience and	4	4	Online	-	-
		biotechnology					
<mark>17</mark>		Clinical research and	<mark>4</mark>	3	Offline	1	1
	UK6DSEBIT327	data management					
18		Introduction to	4	3	Offline	1	1
		Forensic					
	UK6DSEBIT328	biotechnology					
19	UK6DSEBIT329	Chemical ecology	4	3	Offline	1	1
Skill	enhancement Cour	ses 300-399	·				
1	UK6SECBIT302	Datascience and	3	3	Offline		-
		biotechnology					

UK6SECBIT303 data management Image of the second seco				1				
Technology Image: Constraint of the second	2	UK6SECBIT303		3	3	Offline	-	-
Image: standard string	3	UK6SECBIT304		3	3	Offline	-	-
Industrial Regulatory Affairs 3 3 Offline - - SEMESTER 7 - - - - - - Discipline Specific Core Level 400-499- A12(P),A13(P) capstone - - - - - UK7DSCBIT400 istem cell technology and regenerative medicine 4 3 Offline 1 1 UK7DSCBIT401 Introduction to metabolic engineering 4 3 Offline 1 1 WK7DSCBIT402 Gene Therapy and gene editing Technologies 4 3 Offline 1 1 WK7DSCBIT400 Research methoology and Biostatistics 4 3 Offline 1 1 Discipline Specific Elective courses 400-499, DSE 7 Internship Research methoology and Biostatistics 4 3 Offline 1 1 WK8DSCBIT403 Research methodology and UK8DSCBIT404 Internship Project for UK8DSCBIT404 Internship Project for UG Honours Internship Project for UG Honours with Research Project for UG Honours with Research Internship Research Internship Research SPECIALIZATIONS IN BIOTECHNOLGY PharmaBiologics 4 3 1 -	4	UK6SECBIT305		3	3		-	-
SEMESTER 7 Discipline Specific Core Level 400-499- A12(P),A13(P) capstone Image: Stem cell technology and regenerative medicine Image: UK7DSCBIT400 Image: Stem cell technology and regenerative medicine Image: UK7DSCBIT401 Introduction to metabolic engineering Image: UK7DSCBIT402 Gene Therapy and gene editing Technologies Image: Stem cell technology and Biostatistics Image: UK8DSCBIT403 Image: UK8DSCBIT404 Image: UK8DSCBIT404 Image: UK8DSCBIT400 Internship Project for UG Honours with Research Project for UG Honours with Research Image: UK8DSCBIT300 Image: UK8DSCBIT301 Image: UK8DSEBIT301 Image: UK4DSEBIT302 Image: UK4DSEBIT318	5		Industrial Regulatory	3	3		-	-
Discipline Specific Core Level 400-499- A12(P),A13(P) capstone stem cell technology and regenerative medicine 3 Offline 1 1 UK7DSCBIT400 Introduction to metabolic engineering 4 3 Offline 1 1 UK7DSCBIT401 Introduction to metabolic engineering 4 3 Offline 1 1 UK7DSCBIT402 Gene Therapy and gene celting Technolgies 4 3 Offline 1 1 WK7DSEBIT400 Research methodology and Biostatistics 4 3 Offline 1 1 UK7DSCBIT401 Research methodology and Biostatistics 4 0 offline 1 1 SEMESTER 8 000C Courses A-14, A-15 0 online 1 1 UK8DSCBIT403 0 online 1 1 1 UK8DSCBIT404 0 online 1 1 UK8DSCBIT404	CE		Allalis					
stem cell technology and regenerative medicine 4 3 Offline 1 1 WK7DSCBIT401 Introduction to metabolic engineering 4 3 Offline 1 1 WK7DSCBIT402 Gene Therapy and gene editing Technolgies 4 3 Offline 1 1 WK7DSCBIT402 Gene Therapy and gene editing Technolgies 4 3 Offline 1 1 WK7DSEBIT400 Research methodology and Biostatistics 4 3 Offline 1 1 SEMESTER 8 MOOC Courses A-14, A-15 Imternship Project for online Imternship Imternship Imternship UK8DSCBIT403 Internship Project for UG Honours online Imternship Imternship Imternship Imternship UK8RPHBIT400 Research Project for UG Honours with Research Imternship Imternship Imternship Imternship SPECLALIZATIONS IN BIOTECHNOLGY Imternship Imternship Imternship Imternship VK5DSEBIT301 Genomics and proteomics 4 3 Imternship Imternship UK5DSEBIT310 Imamaeovigilence 4			ro Lovol 400 400 412	(D) A 13	R(D) const	0 n 0		
UK7DSCBIT400 and regenerative medicine Image: constraint of medicine Image: cons	1	cipine specific Co					1	1
INK7DSCBIT401 Introduction to metabolic engineering 4 3 Offline 1 1 INK7DSCBIT402 Gene Therapy and gene editing Technolgies 4 3 Offline 1 1 INK7DSCBIT402 Gene Therapy and gene editing Technolgies 4 3 Offline 1 1 INK7DSEBIT400 Research methodology and Biostatistics 4 3 Offline 1 1 SEMESTER 8 methodology and Biostatistics 4 0 offline 1 1 UK8DSCBIT403 online online 1 1 1 1 UK8DSCBIT404 online online 1 1 1 UK8DSCBIT404 online 1 1 1 UK8DSCBIT404 online 1 1 1 UK8DSCBIT404 Internship Project for UG Honours online 1 1 UG Honours UG Honours with Research 1 1 1 SPECIALIZATIONS IN BIOTECHNOLGY Internship Project for UK5DSEBIT310 Genomics and proteomics 1 1 1 UK6DSEBIT318	1	UK7DSCBIT400	and regenerative	-	5	Online	1	1
engineering 4 3 Offline 1 1 B UK7DSCBIT402 Gene Therapy and gene editing Technolgies 4 3 Offline 1 1 Discipline Specific Elective courses 400-499, DSE7 Echnolgies 4 3 Offline 1 1 UK7DSEBIT400 Research methodology and Biostatistics 4 4 offline 1 1 SEMESTER 8 Biostatistics 0 online 1 1 1 VK8DSCBIT403 0 online 0 0 1 1 1 VK8DSCBIT404 0 0 online 1 1 1 1 VK8DSCBIT404 0 0 online 1 1 1 1 Project 0 Internship Project for UG Honours with Research 0 0 1 1 1 SPECIALIZATIONS IN BIOTECHNOLGY VK5DSEBIT301 Genomics and proteomics 4 3 1 - - UK5DSEBIT310 Pharmaceutical biotechnology 4 3 1 - -	2			4	3	Offline	1	1
i UK7DSCBIT402 Gene Therapy and gene editing Technolgies 4 3 Offline 1 1 Discipline Specific Elective courses 400-499, DSE7 Image: Construction of the technology and Biostatistics 4 4 offline 1 1 Discipline Specific Elective courses 400-499, DSE7 Image: Construction of technology and Biostatistics 4 4 offline 1 1 SEMESTER 8 WOOC Courses A-14, A-15 Image: Construction of technology and Biostatistics 0 online 1 1 UK8DSCBIT403 Internship Project for UG Honours Internship Project for UG Honours with Research Image: Construction of technology 1 1 1 Project Internship Project for UG Honours with Research Image: Construction of technology 1 1 1 SPECIALIZATIONS IN BIOTECHNOLGY PharmaBiologics 1 - - - UK5DSEBIT301 Genomics and proteomics 4 3 1 - - UK6DSEBIT328 pharmacogenomics and pharmacovigilence 4 3 1 - - UK6DSEBIT318 PharmaBiologies 4 2 1								
Discipline Specific Elective courses 400-499, DSE7 UK7DSEBIT400 Research A A A A A A A A A A A A A A A A A A A			engineering					
Technolgies Technolgies Discipline Specific Elective courses 400-499, DSE7 UK7DSEBIT400 Research methodology and Biostatistics 4 4 6 offline 1 SEMESTER 8 MOOC Courses A-14, A-15 -	3	UK7DSCBIT402	Gene Therapy and	4	3	Offline	1	1
Discipline Specific Elective courses 400-499, DSE7 UK7DSEBIT400 Research methodology and Biostatistics 4 6 offline - WK7DSEBIT400 Research methodology and Biostatistics 4 6 offline - - SEMESTER 8 -								
UK7DSEBIT400 Research methodology and Biostatistics 4 4 offline Image: Constraint of the second sec								
methodology and Biostatistics methodology and Biostatistics SEMESTER 8 MOOC Courses A-14, A-15 UK8DSCBIT403 online UK8DSCBIT404 online UK8DSCBIT404 online UK8DSCBIT404 online Project online UK8CIPBIT400 Internship Project for UG Honours online UK8RPHBIT400 Research Project for UG Honours with Research online SPECIALIZATIONS IN BIOTECHNOLGY PharmaBiologics UK5DSEBIT301 Genomics and proteomics 4 3 1 - UK6DSEBIT328 Pharmaceutical biotechnology 4 3 1 - - UK6DSEBIT318 PharmaBiologics 4 2 1 1 1	Disc							
SEMESTER 8 MOOC Courses A-14, A-15 UK8DSCBIT403 online UK8DSCBIT404 online Project online UK8CIPBIT400 Internship Project for UG Honours online UK8CIPBIT400 Internship Project for UG Honours online VK8RPHBIT400 Research Project for UG Honours with Research online SPECIALIZATIONS IN BIOTECHNOLGY SPECIALIZATIONS IN BIOTECHNOLGY VK5DSEBIT301 Genomics and proteomics 4 3 1 - UK5DSEBIT310 Pharmaceutical biotechnology 4 3 1 - - UK6DSEBIT328 pharmacogenomics and pharmacovigilence 4 3 1 - - UK6DSEBIT318 PharmaBiologics 4 2 1 1 1	1	UK7DSEBIT400	methodology and	4	<mark>4</mark>	offline	•	-
MOOC Courses A-14, A-15 UK8DSCBIT403 online UK8DSCBIT404 online Project UK8CIPBIT400 Internship Project for UG Honours UK8RPHBIT400 Research Project for UG Honours with Research Image: Constraint of the second	SE	MESTER 8						
UK8DSCBIT403 online online UK8DSCBIT404 online online Project online online UK8CIPBIT400 Internship Project for UG Honours online online UK8CIPBIT400 Internship Project for UG Honours online online UK8RPHBIT400 Research Project for UG Honours with Research online online SPECIALIZATIONS IN BIOTECHNOLGY PharmaBiologics online online UK5DSEBIT301 Genomics and proteomics 4 3 1 online UK5DSEBIT310 Pharmaceutical biotechnology 4 3 1 online UK6DSEBIT328 pharmacogenomics and pharmacovigilence 4 3 1 online UK6DSEBIT318 PharmaBiologics 4 2 1 1 1			-15					
Project online online WK8DSCBIT404 Internship Project for UG Honours online online WK8CIPBIT400 Internship Project for UG Honours online online WK8RPHBIT400 Research Project for UG Honours with Research online online SPECIALIZATIONS IN BIOTECHNOLGY PharmaBiologics online online UK5DSEBIT301 Genomics and proteomics online online UK5DSEBIT310 Pharmacoutical biotechnology online online UK6DSEBIT328 pharmacogenomics and pharmacovigilence online online UK6DSEBIT318 PharmaBiologics online online online	1	,				online		
Project UK8CIPBIT400 Internship Project for UG Honours Internship Project for UG Honours Internship Project 2 UK8RPHBIT400 Research Project for UG Honours with Research Internship Project for UK 5DSEBIT310 Internship Project for Pharmacours Internship Project for UK 5DSEBIT310 Internship Project for Pharmacours Internship Project for Pharmacours Internship PharmaBiologics Internship PharmaCours UK 6DSEBIT318 PharmaBiologics Internship PharmaCours Internship PharmaCours Internship PharmaCours Internship PharmaCours								
UK8CIPBIT400 Internship Project for UG Honours Internship Project for UG Honours Internship Project for UG Honours 2 UK8RPHBIT400 Research Project for UG Honours with Research Image: Comparison of the second UG Honours with Research Image: Comparison of the second UK SDSEBIT310 Image: Comparison of the second UK SDSEBIT310 Image: Comparison of the second UK SDSEBIT328 Image: Comparison of the second UK SDSEBIT318 Image: Comparison of the secon	2	UK8DSCBIT404				online		
UK8CIPBIT400 Internship Project for UG Honours Internship Project for UG Honours Internship Project for UG Honours 2 UK8RPHBIT400 Research Project for UG Honours with Research Image: Comparison of the second UG Honours with Research Image: Comparison of the second UK SDSEBIT310 Image: Comparison of the second UK SDSEBIT310 Image: Comparison of the second UK SDSEBIT328 Image: Comparison of the second UK SDSEBIT318 Image: Comparison of the secon	Pr	oject						
International problem for International problem for UG Honours International problem UG Honours Research Project for International problem UG Honours with Research International problem SPECIALIZATIONS IN BIOTECHNOLGY PharmaBiologics UK5DSEBIT301 Genomics and proteomics 4 3 1 - - UK5DSEBIT310 Pharmaceutical biotechnology 4 3 1 - - UK6DSEBIT328 pharmacogenomics and pharmacovigilence 4 2 1 1 1	1		Internship Project					
UG HonoursImage: Constraint of the second project for UG Honours with ResearchImage: Constraint of the second project for UG Honours with ResearchSPECIALIZATIONS IN BIOTECHNOLGYSPECIALIZATIONS IN BIOTECHNOLGYSPECIALIZATIONS IN BIOTECHNOLGYUK5DSEBIT301Genomics and proteomics431-UK5DSEBIT301Pharmaceutical biotechnology4211UK6DSEBIT328pharmacogenomics and pharmacovigilence431-UK6DSEBIT318PharmaBiologics4211								
UG Honours with ResearchUG Honours with ResearchImage: Constraint of the second								
UG Honours with ResearchUG Honours with ResearchImage: Constraint of the second	2	UK8RPHBIT400	Research Project for					
SPECIALIZATIONS IN BIOTECHNOLGY PharmaBiologics UK5DSEBIT301 Genomics and proteomics 4 3 1 - - UK5DSEBIT310 Pharmaceutical biotechnology 4 2 1 1 1 UK6DSEBIT328 pharmacogenomics and pharmacovigilence 4 3 1 - - UK6DSEBIT318 PharmaBiologics 4 2 1 1 1								
PharmaBiologicsUK5DSEBIT301Genomics and proteomics431UK5DSEBIT310Pharmaceutical biotechnology42111UK6DSEBIT328pharmacogenomics and pharmacovigilence431UK6DSEBIT318PharmaBiologics42111			Research					
UK5DSEBIT301Genomics and proteomics431UK5DSEBIT310Pharmaceutical biotechnology42111UK6DSEBIT328pharmacogenomics and pharmacovigilence431UK6DSEBIT318PharmaBiologics42111	SP	ECIALIZATI	ONS IN BIOTEC	'HNO	LGY			
UK5DSEBIT301Genomics and proteomics431UK5DSEBIT310Pharmaceutical biotechnology42111UK6DSEBIT328pharmacogenomics and pharmacovigilence431UK6DSEBIT318PharmaBiologics42111		PharmaB	iologics					
UK5DSEBIT310Pharmaceutical biotechnology42111UK6DSEBIT328pharmacogenomics and pharmacovigilence431UK6DSEBIT318PharmaBiologics42111				4	3	1	-	-
biotechnologyUK6DSEBIT328pharmacogenomics and pharmacovigilence431-UK6DSEBIT318PharmaBiologics4211		UK5DSEBIT301	proteomics					
UK6DSEBIT328pharmacogenomics and pharmacovigilence431UK6DSEBIT318PharmaBiologics42111		UK5DSEBIT310		4	2	1	1	1
UK6DSEBIT318 PharmaBiologics 4 2 1 1 1		UK6DSEBIT328	pharmacogenomics and	4	3	1	-	-
Clinical research and data management		UK6DSEBIT318		4	2	1	1	1
Chinear research and data management		Clinical rese	arch and data m	anage	ement			

UK4DSEBIT204	Bioinformatics	4	3	1	1	1
UK5DSEBIT301	Genomics and	4	3	1		-
	proteomics					
UK6SECBIT302	Datascience and	4	3	2	-	-
	biotechnology					
UK6DSEBIT327	Clinical research and	4	2	1	1	1
	data management					
Marine Biop	roducts					
UK4DSEBIT204	Biophysics and	4	3	1	-	-
	instrumentation					
UK5DSEBIT307	Marine biotechnology	4	2	1	1	1
UK6DSEBIT319	Marine Biodiversity	4	3	1	-	-
UK6DSEBIT320	Marine Bioproducts	4	2	1	1	1
Cancer The	rapeutics					
UK5DSEBIT300	Genomics and	4	3	1	-	-
	proteomics					
UK5DSEBIT303	Cancer biology	4	2	1	1	1
UK6DSEBIT315	Cancer Therapeutics	4	3	1	-	-
UK6DSEBIT316	Tumour	4	3	1	-	-
	Immunotherapy					
Molecular di	iagnostics and Tl	nerapo	eutics			
UK5DSEBIT301	Genomics and	4	3	1	-	-
	proteomics					
UK5DSEBIT300	Molecular diagnostics	4	3	1	-	-
UK6DSEBIT315	Cancer Therapeutics	4	2	1	1	1
UK6DSEBIT322	Vaccine Technology	4	3	1	-	-
UK6DSEBIT323	Advanced Studies in Antivirals	4	2	1	1	1
Functional	foods, neutrac	eutica	als and	l neutrig	enomics	
UK5DSEBIT301	Genomics and	4	3	1	-	-
	proteomics					
UK5DSEBIT306	Food microbiology	4	2	1	1	1
UK6DSEBIT324	Advanced food	4		1	1	1
	preservation		2			
	technology					
UK6DSEBIT312	Food safety,	4	2	1	1	1
	Preservation and					
	Quality management					
UK6DSEBIT325	Functional foods,	4		1	-	-
	neutraceuticals and		3			
	neutrigenomics					

SEMESTER I

Discipline Specific Core 100-199 Level-A1(P)

University of Kerala

Discipline	BIOTECH	INOLOGY			
Course	UK1DSCB	IT100			
Code					
Course	ESSENTL	ALS OF BIOTEC	CHNOLOGY		
Title					
Type of	DSC				
Course					
Semester	Ι				
Academic	100 - 199				
Level					
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week
Details		week	per week	per week	
	4	2 hours	1	2 hours	5

Pre-	Basic knowledge in life sciences
requisites	
Course Summary	This course provides a summary of the essential concepts, methodologies, applications, and implications of biotechnology. Students will comprehend the fundamental principles underlying various domains like plant, animal, environmental, food, and industrial biotechnology and their significance in advancing scientific understanding, technological innovation, and societal progress.

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		Overview of Biotechnology	5				
	1	Historical perspectives and Milestones, Scope and significance of Biotechnology, Major Areas of Biotechnology (Red, White, Green and Blue Biotechnology),					
	2 Commercial potential of Biotechnology, Biotechnology in India, and its global trends						
	3	Major Biotechnology institutes and companies in India.GenenTech , Bocon case study					
II		Gene & Genetic Engineering	9				
	4	DNA as genetic material, Central dogma, Concept of Gene					
	5	Genetic Engineering: Definition, Steps involved, A brief account on Tools - Restriction Enzymes, DNA Ligases, Plasmid as vectors (pBR 322).prediction of biological phenomena-Alfa fold2 case study					
III		Plant, Animal and Environmental Biotechnology	12				
	6	Transgenic Plants – Agricultural Applications -Herbicide tolerant crops (Glyphosate resistant), Insect resistant crops (Bt cotton), Nutritionally improved crops (Golden Rice), Shelf-life improved crop (Flavr Savr) and Non-agricultural Applications - Bio-Pharming					
	7	Transgenic Animals - Applications - Production of therapeutic proteins (ATryn Cow), Environment friendly Farm animals (Enviro pigs), Production of silk (Spider goat)					
	8	Bioremediation - Bacteria for oil spill clean-up, Heavy metal remediation Bioenergy Production -Biogas, Bioethanol, Biodiesel Bioplastics – PHB and its applications					
	9	Overview – synthetic genome,Biomimetics,Artificial Life,Unconventional Molecular Biology					
	10 Brief- Insilico Biology, SciFi Foods,Cellular agriculture, Artificial Intelligence in Biotechnology,Space exploration biology						
IV		Food and Industrial Biotechnology	10				

	11	Microbial Fermentation in Food Production: Fermented Foods (Yogurt, Cheese) and Beverages (Beer, Wine), SCP-	
	12	Microbial production of Antibiotics (Penicillin), Vitamins (B12), Amino acids (Glutamic acid), Organic acids (Citric acid), Enzymes (Protease and Amylase), Applications of Hybridoma technology Ethical issues in Biotechnology	0
v	13	Ethical considerations in biotechnological research and applications, Public perception and acceptance of Biotechnology,	,
		Regulatory frameworks, and implications, Dark Biotechnology	

Practicum (30 Hours)-[Essential Experiments(15 Hrs), Group/Individual Experiments (15 Hrs)]

Essential Experiments

1) Awareness on safety Precautions and Good Laboratory Practices

2)Introducing Laboratory Instruments: Microscope, pH meter, Colorimeter, Centrifuge, Incubator, Shaker and Stirrer, Autoclave, Water Bath, LAF, Gel Electrophoresis Systems

3)Preparation of agarose gel for gel electrophoresis.

4)Set up small-scale fermentation experiments using yeast cultures and appropriate growth media.

5) Produce fermented food products such as yogurt using starter cultures

Suggested Readings:

- 1. Introduction to Genetic Engineering & Biotechnology (2008), Nair, A.J., Infinity Science Press.
- 2. Biotechnology Expanding Horizons (5th edn. 2023), B.D. Singh, MedTech Science Pres
- 3. Principles of gene manipulation (6th edn.), S.B. Primrose, R.M. Twyman & R.W. Old, Blackwell pub.
- 4. Gene Cloning & DNA Analysis: An introduction (8th edn), T.A. Brown, Wiley Blackwell pub
- 5. Advanced Biotechnology (2014), R.C. Dubey, S. Chand Publication
- 6. Plant Biotechnology: The genetic manipulation of plants (2nd edn), Adrian Slater, Nigel Scott & Mark Fowler, Oxford pub.
- 7. Biotechnology (2005), U. Satyanarayana & U. Chakrapani, Books & Allied Pub Pvt.Ltd
- 8. Introduction to Biotechnology & Genetic engineering (2010), Nair, AJ, Johns & Bartlett Pub, Boston USA.
- 9. Industrial Microbiology (2nd edn.), L.E.J.R. Casida, New Age International P.
- 10. X) Principles and techniques of Biochemistry & Molecular Biology (7th edn.) edited by Keith Wilson & John Walker, Cambridge University Press.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed

CO- 1	Understand the history and scope of biotechnology and differentiate among the classes of biotechnology	U	PSO-1,2
CO- 2	Describe the various tools, techniques used in genetic engineering and understand the molecular basis of life	R, U	PSO-1,4
CO- 3	Understand the applications of biotechnology in environment, and associate with applications of transgenic plants and animals	U, E	PSO-1,2,3
CO- 4	Identify the various tools and techniques used for basic biotechnological studies and applications	U, Ap	PSO-3,5
CO- 5	Compare and contrast the various bioprocess technologies in manufacturing of industrial products and understands ethical implications of biotechnology	U	PSO-1,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Essentials of Biotechnology Credits: 2:1:2 (Lecture: Tutorial: Practical)

CO No.	CO	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)	Practical (P)
1	Understand the history and scope of biotechnology and differentiate among the classes of biotechnology	PO-1 PSO-1,2	U	F	L	
2	Describe the various tools, techniques used in genetic engineering and understand the molecular basis of life	PO-3 PSO-1,4	R, U	F, C	Τ	
3	Understand the applications of biotechnology in environment, and associate with applications of transgenic plants and animals	PO-1,2 PSO- 1,2,3	U, E	F, C	L	

4	Identify the various tools and techniques used for basic biotechnological studies and applications	PO-6 PSO-3,5	U, Ap	F, P		Р
5	Compare and contrast the various bioprocess technologies in manufacturing of industrial products and understands ethical implications of biotechnology	PO-3,8 PSO-1,5	U	F	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO	PSO	PO							
	1	2	3	4	5	1	2	3	4	5	6	7	8
С	3	2	-	-	-	3	-	-	-	-	-	-	-
0													
1													
С	2	-	-	1	-	-	-	2	-	-	-	-	-
0													
2													
С	2	3	1	-	-	2	1	-	-	-	-	-	-
0													
3													
С	-	-	1	-	5	-	-	-	-	-	2	-	-
0													
4													
С	1	-	-	-	3	2	-	1	-	-	-	-	2
0													
5													

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium

3	Substantial / High
---	--------------------

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			✓
CO 2	1			✓
CO 3	1			✓
CO 4		1		✓
CO 5		✓		✓

Multidisciplinary Courses 100-199

University of Kerala

Discipline	BIOTECH	BIOTECHNOLOGY						
Course	UK1MDC	UK1MDCBIT101						
Code								
Course	INNOVA	TIONS IN BIOTI	ECHNOLOGY	7				
Title								
Type of	MDC							
Course								
Semester	Ι							
Academic	100 – 199							
Level								
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	3	2 hours	1	-	3			
Pre-	Essentials	of Biotechnology	, Basic Molec	ular Biology				
requisites								
Course		Bio innovation refers to the application of innovative techniques,						
Summary	technol	technologies and principles to biological systems with the aim of solving						
	challer	iges in the fields	such as Health	care, Agricultu	ire, Environmental			
			sustainabili	ty etc.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction and Concepts	9
	1	Introduction: Basics and importance of Bio Innovations,	
	2	Innovative concepts in research and development	
	3	Major industries in Biotechnology.	
II		Major areas of Innovations I	9
	4	Innovations in Genetic Engineering: CRISPR/Cas9 and other genome editing technologies	
	5	Synthetic biology principles and applications, Bioactuators, Cell free Bioprocessing.	
	6	Designing and engineering biological systems,. Green and sustainable bioprocess. High-throughput sequencing platforms and methodologies	
	7	Protein Engineering : computational protein design, protein engineering for biomaterials, Enzyme engineering and Biocatalysis and multi specific and bi specific antibodies. Recombinant protein production techniques Monoclonal antibody technology	
III		Major areas of Innovations II	9
	8	Omics Technology : Next Generation Sequencing, Single Cell omics, Spatial omics and Metagenomics and Microbiomics	
	9	Gene synthesis: High throughput synthesis platforms, Error correction and quality control, Codon optimization and customization and Multi fragment assembly	
	10	Metabolic Engineering : computational tools and algorithm to design and predict metabolic pathways for production of target compounds	
IV		Industrial aspects of Biotechnology	
	11	A brief overview in Bioproduct research and commercialisatiion Nanomaterials in biotechnology applications Targeted drug delivery systems Nanoscale imaging and diagnostics	9
V		Importance of Die Innovations	
	10	Importance of Bio Innovations	0
	12	Genetically modified organisms (GMOs) and crop improvement Precision agriculture and smart farming technologies Biofuels and sustainable agriculture Case study reports about new innovations in Biotechnology	9
		and industrial visit	

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	understand the basics and significance of biotechnological innovations, in the development of society	U	PSO-1,4,5
CO- 2	Understand principles of genetic engineering, and learn to utilize various Biotechnology tools for sustainable development and green bioprocessing.	R, U	PSO1,3
CO- 3	Understand application of Omics approaches to analyze industrial and environmental applications of biotechnological processes.	U,	PSO2,5
CO- 4	understand the fundamental theory and practices in bioproduct research and commercialization	U,An	PSO4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Innovations in biotechnology Credits: 2:1:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	understand the basics and significance of biotechnological innovations	PSO- 1,4,5	U	F, C	L	
CO- 2	understand principles of genetic engineering	PSO1,3	R, U	Р	L	
CO- 3	Evaluate industrial and environmental applications of biotechnology	PSO2,5	U,	С	L	
CO- 4	Assess fundamentals of practicing bioproduct research	PSO- 1,4,5	U,An	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	1	2	-						
CO 2	2	-	1	-	-	-						
CO 3	-	2	-	-	2	-						
CO 4	2	-	-	2	2	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments Final Exam

•

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	~			✓
CO 2	1			1
CO 3	1			1
CO 4		1		✓

SEMESTER II

University of Kerala

University of Kerala

Discipline	BIOTECH	INOLOGY								
Course	UK2DSCB	SIT110								
Code										
Course	BASICS (OF CELL BIOLO	GY							
Title										
Type of	DSC	DSC								
Course										
Semester	II	Π								
Academic	100 - 199	100 - 199								
Level										
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week					
Details		week	per week	per week						
	4	2 hours	1	2 hours	5					
Pre-	Basic know	wledge in life scie	ences							
requisites										
Course	This cours	se is a foundation	level course in	the area of cel	l biology for graduate					
Summary	students.	This course provi	des an overvie	w of the origin	n and diversity of life					
	on earth.	Through this co	urse, learners	can acquire b	asic ideas about the					
	cellular an	d molecular proc	esses of life.							

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Cell as basic unit of life	5
	1	Origin of life – Hypotheses, Experiments to establish the chemical evolution of cell	
	2	RNA world, Protein world, Nucleoprotein world (progene) hypotheses	

	3	Cell as basic unit of life – Prokaryotes and eukaryotes	
	4	Five kingdom classification	
	5	Microbes – general features of archaea, eubacteria, protists, fungi	
	6	Features of plant and animal cell	
Π		Cell Structure	10
	7	Cell Membranes-Structure and Function: Composition of Cell membranes (Membrane lipids, Protein, and Carbohydrates), Fluid Mosaic Model of membrane structure, Membrane transport - Simple diffusion, Facilitated diffusion and Active transport	
	8	Cell organelles- Structure and Functions: Endoplasmic reticulum, Golgi complex, Mitochondria, Chloroplast, Ribosomes, Lysosomes, Peroxisomes, Nucleus, Vacuole, Cytosol and Cytoskeleton structures (Microtubules, Microfilaments, and Intermediate filaments).	
	9	Cell Adhesion, Cell Junctions and Extracellular Matrix: Tight Junctions, Adherens Junctions, Desmosomes, and Gap Junctions, ECM- components (Fibrous Proteins, Glycosaminoglycans and Proteoglycans) and its functions	
III		Genes, Chromosomes and Genomes	9
	10	Genes: Concept and Chemical nature	
	11	Chromosome structure: Chromatid, Chromonema, Chromomeres, Centromere, Telomere, Secondary Constrictions, Nucleolar Organizers, Satellite, Heterochromatin and Euchromatin Chromosomal aberrations (Structural and numerical)	
	12	Genomes: Structure and Composition, Size and Complexity, Genome Packaging, Histones and Nonhistones, Nucleosome and Solenoid Model of Chromatin, Giant Chromosomes	
IV		Basic cellular processes	12
	13	Photosynthesis – Dark and light reaction, Cellular respiration - Glycolysis, Kreb's cycle, ETC and ATP synthesis	
	14	Cell cycle, cellular growth and differentiation, cell division – mitosis and meiosis, Programmed cell death	
	15	Gene expression (Brief account only) – Transcription, translation and	
	16	Overview of cell signalling	
V		Methods and techniques in cell biology	9
	17	Microscopy (Principle and application only)– Light microscopy, fluorescence microscopy, Electron microscopy (SEM, TEM)	
	18	Cell staining techniques	
	19	Cell Lysis, Isolation, purification and detection of proteins and nucleic acids	

Practicum (30 Hours)-[Essential Experiments(15 Hrs), Group/Individual Experiments (15 Hrs)]

Essential Experiments

1. Light microscope- Identification of its parts and handling

- 2. Cell counting using haemocytometer
- 3. Squash preparation of onion root tip and identification of stages of mitosis
- 4. Calculation of mitotic index
- 5. Squash preparation of flower buds of Rhoeo and identification of stages of meiosis
- 6. Isolation of genomic DNA
- 7. Quantification and purity checking of isolated DNA by Spectrophotometry
- 8. Agarose gel electrophoresis and visualization of DNA bands

Suggested Readings:

- Karp's Cell and Molecular Biology: Concepts and Experiments, 9th Edition (2020)
 Gerald Karp, Gerald Karp, and Wallace Marshall; Wiley Publishers
- 2. The Cell: A Molecular Approach, 9th edition (2023) Geoffrey Cooper, Kenneth Adams, OUP USA
- 3. Molecular Biology of the Cell, 7th Edition (2022) Bruce Alberts, Rebecca Heald, Alexander Johnson et al.; WW Norton & Co
- 4. Cell Biology, 4th Edition (2017) Graham Johnson, Jennifer Lippincott-Schwartz, Thomas D. Pollard, William C. Earnshaw, Elsevier Health Sciences Division
- 5. Cell Biology (Cytology, Biomolecules and Molecular Biology), 1st Edition (2016) P S Verma, and V K Agarwal, S Chand Publishing
- 6. Biology: A Global Approach, Global Edition, 10th Edition (2014) Reece / Jackson, Pearson
- Cell And Molecular Biology, 8th Edition (2017) De Robertis E.D.P.; Lea & Febiger, U.S.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand common evolutionary history of life and how living things evolve from simplicity to complexity	R	PSO-1
CO- 2	Identify cellular components and explain its functions	R, U, A	PSO-1
CO- 3	Explain the concepts of gene and genome	R, U	PSO-1
CO- 4	Comprehend the basic cellular processes	U, An	PSO-1, PSO -4
CO- 5	Demonstrate and identify various stages of cell cycle under a microscope	U, A, An	PSO-3

Course Outcomes

CO - Isolate genomic DNA and visualize it agarose gel	U, A	PSO-3	
---	------	-------	--

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Note: 1 or 2 COs/module

Name of the Course: Basics of Cell Biology Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)	Practical (P)
1	Understand Common evolutionary history of life	PSO-1, PO-1	R	F, C	L	
2	Identify cellular components and explain its functions	PSO-1 PO-1	R, U, A	Р	Т	
3	Explain the concepts of gene and genome	PSO-1 PO-1	R, U	F,C	L	
4	Comprehend the basic cellular processes	PSO-1, PSO -4	U, An	М	L, T	
5	Demonstrate and identify various stages of cell cycle under a microscope	PSO-3 PO-6	U, A, An	Р		Р
6	Isolate genomic DNA and visualize it agarose gel	PSO-3 PO-6	U, A	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
--	----------	----------	----------	----------	----------	----------	---------	---------	---------	---------	---------	---------	--

C 0 1	3	-	-	-	-	-	2	-	-	-	-	-
C O 2	3	-	-	-	-	-	3	-	-	-	-	-
C O 3	2	-	-	-	-	-	1	-	-	-	-	-
C O 4	2	-	-	1	-	-	2	2	-	-	-	-
C O 5	-	-	3	-	-	-	-	-	-	-	-	3
C O 6	-	-	3	-	-	-	-	-	-	-	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			<i>✓</i>
CO 2	1			<i>✓</i>

CO 3	>			1
CO 4		~		<i>✓</i>
CO 5		1		\checkmark
CO 6			1	

Multidisciplinary Courses 100-199

Discipline	BIOTECHNOLOGY
	L. L

UK2MDCBIT104						
FOOD SAFETY, PRESERVATION AND QUALITY MANAGEMENT						
			-			
MDC						
II						
100 - 199						
Credit	Lecture per	Tutorial	Practical	Total Hours/Week		
	week	per week	per week			
3	2 hours	1	-S	3		
Microbiol	ogy,Biochemistry	, Animal Phys	iology			
This cours	se provides an in-	depth explora	tion of the prin	ciples, practices, and		
challenges	associated with	ensuring the	e safety, prese	ervation, and quality		
manageme	ent of food produ	cts. It is desig	ned to equip g	raduate students with		
advanced	knowledge and sk	ills necessary t	to address com	olex issues in the food		
industry, r	egulatory complia	ance, and cons	umer protection	n.		
	FOOD SA MDC II 100 - 199 Credit 3 Microbiolo This cours challenges manageme advanced	MDC II 100 - 199 Credit Lecture per week 3 2 hours Microbiology,Biochemistry This course provides an in- challenges associated with management of food produ advanced knowledge and sk	FOOD SAFETY, PRESERVATION ANI MDC II 100 - 199 Credit Lecture per veek 3 2 hours 1 Microbiology,Biochemistry, Animal Phys This course provides an in-depth explora challenges associated with ensuring the management of food products. It is desig advanced knowledge and skills necessary	FOOD SAFETY, PRESERVATION AND QUALITY M MDC II 100 - 199 Credit Lecture per Tutorial Practical week per week per week		

Detailed Syllabus:

Module	Unit	content	Hrs			
Ι		food handling, adulteration and spoilage	9			
	1 Food hygiene and health: Concepts of personal hygiene in food handling, Modes of disease transmission through food, Good hygienic practices for food handling					
	2 Food adulterants: Types of food adulterants- intentional and incidental, metallic adulteration, Adulteration in important food items (milk, fat and oil, food grains, fruits and vegetables, spices, honey and beverages), food adulteration and public health					
	3	Food spoilage: Types -, physical, chemical and biological spoilage Microbial Food spoilage: Factors affecting microbial growth in food, , Spoilage of canned food				
II		food borne intoxications and infections	9			
	4	Overview of foodborne illnesses: definitions, scope, and significance				
	5 Causes of foodborne illnesses - Physical hazards, Chemical Hazards and Biological Hazards					
	6 Foodborne infections- Cholera, Salmonellosis, Shigellosis, Typhoid fever, Brucellosis, E. coli Diarrhoea					
	7	Foodborne intoxications- Botulism, Staphylococcal food poisoning, Aflatoxins and Mycotoxins. Risk factors for foodborne illness susceptibility and severity				

III		food additives, preservatives, and packaging 9						
	9	Food preservation –Importance and scope Conventional methods of food preservation (Smoking, Sun drying, Pickling/ Salting, Fermentation)						

	Physical Methods of food preservation- High temperature, Low temperature, dehydration and Concentration, Cold pressing (Fruits, Oils), Ionizing radiation and microwave heating Chemical methods of food preservation – Classification of preservatives- Class I and Class II preservatives ,Food Additives Biological methods of food preservation – Bio-preservation –							
	Biological methods of food preservation – Bio-preservation -							
		Fermentation, Use of LAB, Enzymes (e.g. lysozyme)						
	11	Food packaging: GMP, Methods of food packaging, Types of food packaging materials, bio-packaging materials						
IV		food quality management	9					
	13	Total Quality Management (TQM) principles, Quality control and assurance methodologies						
	14	Indicator organisms: Food and water quality						
	15	Food labelling: Purpose and types of food labels						
	16	Food safety and quality control: Food laws and standards (PFA act, Overview of Codex alimentarius, Agmark, ISO, BIS, FSSAI, HACCP) Regulatory frameworks (FDA, USDA, Codex Alimentarius, etc.). HACCP (Hazard Analysis and Critical Control Points) principles and implementation						
V		Familiarize with General Laboratory Techniques	9					
	18	Water quality analysis– MPN method						
	19	Isolation and identification of microbes from spoiled food- spoiled milk, meat, fish, vegetables, grains etc.						
	20	Food preservation techniques: Pickling, salting and drying						
	21	Detection of adulteration in food (e.g. milk)						
	22	Preparation of case study report						
	23	Visit to Food research institutes/ industries						

Suggested reading

1. https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.3732

2. Food microbiology- MR Adams and MO Moss, 4th edition, Royal Society of Chemistry,2015

- 3. Industrial microbiology- L E Casida, JR, New Age International Publishers, 2019
- 4. Basic food microbiology 2^{nd} edition, George J Banwart, CBS Publishers, 2017 5, Food Microbiology William C Frazier, 5th edition, McGraw Hill Education, 2017
- 6. Industrial Microbiology A H Patel, 2nd edition, Laxmi Publications, 2022
- 7. Microbiology- L M Prescott, McGraw Hill, 2016

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive	PSO addressed
		Level	auuresseu

CO-1	Understand the vital link between food & health	U	PSO-1
CO-2	Familiarize the microbial diversity associated with food & their role in spoilage/ preservation	R, U	PSO1
CO-3	Develop Knowledge on organisms identified as leading causes of food borne illness	An	PSO1
CO- 4	Learn & implement important methods for food preservation for ensuring quality of processed food	Ар	PSO1,4
CO-5	Impart comprehensive overview of the scientific & technical aspects of food packaging	C,Ap	PSO4
CO- 6	Instill knowledge on packaging systems, testing & regulations of packaging	E,C	PSO4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Food Safety, preservation and quality management Credits: 2:1:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the vital link between food & health	PSO1	U	F, C	L	
CO-2	Familiarize the microbial diversity of food	PSO1	R, U	Р	L	
CO-3	Develop Knowledge on food borne illness	PSO1	An	F	L	
CO- 4	Learn & implement food	PSO1,4	Ар	F	L	

	preservation methods				
CO5	Impart knowledge of food packaging	PSO4	C,Ap	L	
CO6	knowledge on testing & regulations of packaging	PSO4,5	E,C	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-						
CO 2	2	-	-	-	-	-						
CO 3	2	-	-	-	-	-						
CO 4	2	-	-	3	-	-						
CO 5	-	-	-	3	-	-						
CO 6	-	-	-	3	2	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low

2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			1
CO 2	1			J.
CO 3	1			1
CO 4		1		1
CO 5		1		1
CO 6			1	

•

SEMESTER III

Discipline Specific Core 200-299 Level A3(P)

University of Kerala

Discipline	BIOTECH	INOLOGY					
Course	UK3DSCB	UK3DSCBIT201					
Code							
Course	MICROB	[OLOGY					
Title							
Type of	DSC						
Course							
Semester	III	III					
Academic	200 - 299						
Level							
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week		
Details		week	per week	per week			
	4	2 hours	1	2 hours	5		
Pre-	Basic know	wledge of Biolog	y and Biochem	nistry			
requisites							
Course	The Micro	biology course de	elves deeply in	to the microbia	l world, covering key		
Summary	aspects fr	om past discover	ries to practic	al applications	in various fields. It		
	equips stu	quips students with a strong foundation in microbiology, necessary lab skills,					
		ough understand			ses, and control		
	methods v	ital in scientific a	nd industrial c	ontexts.			

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to the microbial world	6
	1	Overview of key events and discoveries in microbial history. Discovery of the microbial world: Establishment of the theory of biogenesis, Contributions of Anton van Leeuwenhoek, Louis Pasteur and Robert Koch	
	2	Introduction to the prokaryotic world, eukaryotic microorganisms, acellular microorganisms (Viruses, Viroids, Prions)	

	3	Principles of microbial systematics: Taxonomy, phylogeny, and classification methods	
	4	Introduction to systems of classification: Binomial Nomenclature, Whittaker's Five Kingdom classification system, Carl Woese's Three Domain classification system, Comparative analysis and utility of different classification systems	
Π		Principles of microbial control	10
	5	Introduction to microbial control principles: Control by killing, inhibition, and removal.	
	6	Importance and applications of microbial control in various industries and healthcare settings.	

1	r		-
	7	Physical Methods of Microbial Control	
		Heat Treatment: Mechanisms and applications of heat in microbial	
		control, including pasteurization and sterilization techniques.	
		Low Temperature Control: Strategies for microbial control using	
		refrigeration and freezing methods.	
		High Pressure and Filtration: Utilizing pressure and filtration	
		techniques for microbial control.	
	8	Chemical Methods of Microbial Control	
		Modes of Action: Understanding how disinfectants act on	
		microorganisms. Applications	
III		Microbial physiology and structure	10
	9	Ultra structure of bacteria: Cell wall and internal organisation,	
		spores,	
	10	Bacterial cell shape and size	
	-	Motility in bacteria – structure of flagella, types of flagella.	
	11	Nutritional requirements in bacteria and nutritional categories.	
		Culture media: components of media, natural and synthetic media,	
		chemically defined media, complex media, selective, differential,	
		indicator, enriched and enrichment media	
	12	Bacterial growth curve, factors affecting the growth of microbes.	
IV		Bacterial Genetics and Metabolism	
	13	Bacterial Chromosome, Plasmids, Transfer of genetic information	10
	_	in bacteria, Bacterial mutation and Repair	-
	14	Bacterial Recombination- Transformation, Transduction	
		(Generalised and Specialised), Conjugation	
	15	Energy Production in Bacteria	
	16	Aerobic respiration in bacteria: Glycolysis and Krebs cycle,	
	10	Electron Transport Chain and Oxidative phosphorylation inBacteria	
		Anaerobic respiration in bacteria: Alcohol, Acetic acid and Lactate	
		fermentation	
V		Applied Microbiology	9
	17	Agricultural microbiology: Biological nitrogen fixation,	
	1/	Mycorrhizal associations,	

18	microbes as biofertilizer – types and application	
19	Microbes in extreme condition: role of Methanogenic bacteria, extremophiles – Thermophiles, Acidophiles, Halophiles and Alkalophiles Applications.	
20	Case study and industrial visit	

Practicals 30 hrs- Essential Experiments (15 hrs), Group Work (15 hrs)

Essential Experiments

- 1. Handling Microscope
- 2. Preparation of smear on slide and focusing on microscope (low power and high power objective).
- 3. Sterilization and aseptic techniques-preparation and sterilization of glassware and solutions, Autoclaving, Hot air oven
- 4. Media Preparation- Preparation of Luria-Bertani medium, Nutrient agar and their sterilization (Broth and plates).
- 5. Serial dilution of bacterial cultures and spread plating (L rod) to find out population density of microbes in a given sample, incubation and observation of colonies
- 6. Examination of microbial flora of the available soil and water samples. a) Pour plate method, b) Streak plate method Continuous, Quadrant & T streak.
- 7. .Staining of bacteria- Gram staining, Acid fast staining, Negative staining.
- 8. Microscopic tests for bacterial motility- Hanging Drop experiment
- 9.Identification of bacterial and fungal cultures microscopically.
- 10. Antibiotics sensitivity assays- Kirby Bauer Method

Suggested Readings:

- 1. A Textbook of Microbiology P. Chakraborthy, New central Book agency Pvt. Ltd, calcutta
- 2. Modern concept of Microbiology D D Kumar, S Kumar; Vikas Publishing House Pvt. Ltd. New Delhi
- 3. Introduction to Genetic Engineering & Biotechnology- A. J. Nair; Jones & Bartlett Publishers, Boston, USA.
- 4. Introduction to Microbiology- J Heritage, E G V Evans, R A Killington; Cambridge University Press.
- 5. Microbiology L M Prescott, Brown Publishers, Australia
- 6. Advances in Microbiology J P Tewari, T N Lakhanpal, I Singh, R Gupta and B P Chanola; A P H Publishing Corporation, New Delhi.
- 7. Microbiology: Principles and Explorations Jacquelyn G. Black. Prentice Hall, New Jersey.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understanding the key events in microbial history.	U	PSO-1,2
CO- 2	Explain scope of microbiology and different types of microorganisms.	R, U,A	POS1
CO- 3	Understand Principles of Microbial classification, genetics and metabolism	U,A	PSO1
CO- 4	Understand strategies for microbial control. Analyse disinfectants and their modes of action.	U,Ap,An	POS1,PSO3
CO- 5	Differentiate between culture media types and understand factors affecting microbial growth.	U, An	POS1,PSO4
CO- 6	Gain practical skills in sampling, isolation, staining, and morphology observation.	E, An	PSO3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: The world of microbes credits: 2:1:2 (lecture:tutorial:practical)

CO No.	CO	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Understand History of Microbiology	PSO-1,2	U	F, C	L	-
CO- 2	Explains microbial classification	POS1	R, U,A	Р	L	-
CO- 3	Explains principle of microbial control	PSO1	U,A	F	L	-
CO- 4	Analyse the factors affecting microbial Growth	POS1,PSO3	U,Ap,An	F	L	
CO- 5	Understand the requirements to culture microbes in Lab condition	POS1,PSO4	U, An	Р	L	Р
CO- 6	Gain practical skills in microbiology lab	PSO3	E, An	Р	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
C O 1	3	-	-	-	-	-						
C O 2	3	-	-	-	-	-						
C O 3	3	-	-	-	-	-						
C O 4	2	-	2	-	-	-						
C O 5	2	-	-	3	-	-						
C O 6	-	-	3	2	-	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Continuous Comprehensive Assessment:

Formative :

- Interactive Quiz /Group Discussions/Assignment/Student Seminar
- Observation of practical skills/Journal Club presentations
- Punctuality in lab, and time management in completing assigned laboratory tasks

Summative-Internal test papers/Laboratory book/ report/Periodical lab tests

Observation of Practical Internal End Semester Assignment Examinations Exam skills CO ✓ ✓ 1 CO ✓ 1 ✓ 2 CO ✓ ✓ ✓ 3 CO ✓ ✓ 4 CO ✓ ✓ 5 CO ✓ 1 6

Mapping of COs to Assessment Rubrics :

Discipline Specific Elective courses 200-299 DSE-1

.

University of Kerala

Discipline	BIOTECH	INOLOGY					
Course	UK3DSEB	UK3DSEBIT200					
Code							
Course	BIOPHYS	SICS AND INSTR	RUMENTATI	ON			
Title							
Type of	DSE						
Course							
Semester	III						
Academic	200 - 299.						
Level			1	1	1		
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week		
Details		week	per week	per week			
	4	3 hours	1	-	4		
Pre-	Basic Phys	siology, Basic Bio	ochemistry, Fu	ndamentals of	Chemistry		
requisites							
Course	Biophysics	s and Instrumenta	tion is an adva	anced graduate-	level course that		
Summary		ne interdisciplinar					
		systems. The cou					
		chemistry, and engineering to understand the physical properties of biological					
		and systems. Em					
		n of various instru			y biological		
	processes	at molecular, cell	ular, and orgar	nismal levels.			

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Principles of thermodynamics	12
	1	Thermodynamics and kinetics of biological processes, energy change in the biochemical reactions	
	2.	Electrical properties of biological compartments: membrane potential, Electricity as a potential signal in biological systems, measuring redox potentials in biological reactions. electrochemical gradients, ATP synthesis, and chemiosmotic hypothesis	
II		Biophysics of physiological events	12
	3.	Biophysics of Photosynthesis - Light reception in plants, microbes and animals. absorption spectra and action spectra of photosynthetic pigments, Fluorescence and phosphorescence	

[4		
	4.	Biophysics of Vision, Muscle movements and Hearing:	
		Mechanism of vision, muscular movements and hearing,	
		correction of vision faults, hearing aids.	
	5.	Intra and inter molecular interactions in the biological system -	
		inter and intramolecular interactions with implications in	
		biological systems. Overview of single-molecule techniques for	
		studying biomolecular interactions and dynamics	
III		Basic Instrumentation in Biology	12
	6.		
		Electrophoresis: Principle of electrophoresis, types of	
		electrophoresis, 2-D gel electrophoresis	
	7.	Microscopy: Principle of Microscopy, various types of Microscopy	
		- Simple, Phase contrast, Fluorescence and electron microscopy	
		(TEM and SEM). Overview of cryo-electron microscopy, Atomic	
		force microscopy (AFM) Scanning probe microscopy and Confocal	
		microscopy	
	8.	Basic principles and working of instruments: pHmeter,	
		centrifugation, chromatography	
	0		
	9.	Overview: Electrophysiological techniques for studying membrane	
		proteins and ion channels	
	10	Spectrophotometer(UV and Visible) and colorimeter - Beer-	
		Lambert law, atomic absorption spectroscopy, IR, NMR and X-ray	
		Crystallography and Mass Spectrometry.	
IV		Isotopes and radioisotopes	12
	11.	Application of isotopes and radioisotopes in biological research	
	12.	Overview: Introduction to computational modelling and simulation	
		methods in biophysics. Molecular dynamics simulations for	
		studying biomolecular structure and dynamics. Bioinformatics tools for sequence analysis, protein structure prediction, and systems	
		biology	
V		Applications of Biophysics and Instrumentation	12
•	13.	Drug discovery and development.	14
	13.	Biomedical imaging and diagnostics. Biophysical approaches to	
		understanding disease mechanisms.	
		Emerging trends and future directions in biophysics research. Case	
		study reports for radiotracer techniques	
	1.4		
	14.	Submit a report/flowchart for elucidation of the structure of plant	
		metabolites	

Familiarize with the following techniques

1. pH Meter–Use of pH Meter, Familiarization of the instrument and Preparation Phosphate buffers and determination of pH.

- 2. Spectrophotometer–Familiarization of the working of the instrument, Quantitative estimation of Sugars by Dinitrosalysilic acid and Proteins by Lowry's Method
- 3. Development of absorption spectra of chlorophyll or any other biological sample
- 4. Electrophoresis-demonstration of PAGE and Agarose Gel Electrophoresis

Suggested Readings

- 1. Nelson, D. L., & Cox, M. M. (Year). *Lehninger's Biochemistry*. New York, NY: Worth Publishers.
- 2. Voet, D., & Voet, J. G. (Year). Biochemistry. Boston, MA: Jones & Bartlett
- 3. Roy, R. N. (Year). *A Textbook of Biophysics*. Calcutta, India: New Central Book Agency Pvt. Ltd.
- 4. Nair, A. J. (Year). *Introduction to Genetic Engineering & Biotechnology*. Boston, MA: Jones & Bartlett Publishers.
- 5. Volkenstein, M. V. (Year). Biophysics.
- 6. Cantor, C. R., & Schimmel, P. R. (Year). Biophysical Chemistry.
- 7. Phillips, R., Kondev, J., Theriot, J., & Garcia, H. (Year). Physical Biology of the Cell.
- 8. Lakowicz, J. R. (Year). Principles of Fluorescence Spectroscopy.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand how energy changes and conservation in the biochemical reactions is maintained	U	PSO 1, 2
CO- 2	Understand the functioning of physiological events like vision, muscle movement and hearing and various types of biological interactions.	R, U	PSO 1
CO3	Understand basic instrumentation to analyse, elucidate and interpret a biomolecule	R U, An	PSO 3, 4
CO4	Analyse the use of isotopes and radioisotopes in understanding the biochemical and physiological events in biology.	R, U, An	PSO 3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Biophysics and instrumentation Credits: 3:1:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Understand the concepts of energy conservation and changes in biological system	PSO-1,2	U	F, C	L	
CO- 2	Understand the biophysics of basic physiological system	PSO1	R, U	Р	L	
CO3	Understand Basic instrumentation to elucidate the structure of molecules	PSO3,PSO4	R U, An	F, P	L	Р
CO4	Analyser the techniques follow up metabolic pathways	PSO3	R, U, An	Р	L	-

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO	PSO	PSO	PSO	PSO	PSO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	1	2	3	4	5	6
C O 1	2	3	-	-	-	-						

C O 2	3	-	-	-	-	-			
C O 3	-	-	3	4	-	-			
C O 4	-	-	2	-	-	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	<i>✓</i>			<i>✓</i>
CO 2	1			✓
CO 3	1			 Image: A second s
CO 4		1		✓

Value Added Courses 200-299

University of Kerala

Discipline	BIOTECHNOLOGY
Course	UK3VACBIT200
Code	

Course	IPR,BIOE	THICS AND BIO	DSAFETY					
Title								
Type of	VAC							
Course								
Semester	III							
Academic	200 - 299							
Level								
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	3	2 hours	1		3			
Pre-	Essentials	of Biotechnology	7					
requisites								
Course	This cours	e provides an in-	depth explorat	ion of the inter	section of intellectual			
Summary	property ri	ights, bioethics, an	nd biosafety wi	ithin the contex	t of modern scientific			
	research a	research and biotechnology. It aims to equip students with a comprehensive						
	understand	ling of the legal,	ethical, and s	afety considera	ations inherent in the			
	developme	ent, dissemination	, and regulation	on of biotechno	logical innovations.			

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		Basics of Intellectual Property Rights	9				
	1	Basics of Intellectual Property Rights					
		Types of IPR-industrial-patent(types), design, trademark, trade					
		secret, GI; non industrial-copyright(types, infringement,					
		exclusions), Patentable and non-patentable, patenting life, Rights of					
		traditional knowledge holders, Peoples biodiversity register					
	2	2 legal protection of biotechnological inventions, Pros & Cons of IP, World Intellectual Property Right Organization(WIPO), TRIPS agreement, UPOV convention					
		Patent Infringement(Case Study), Plagiarism, plagiarism detection softwares and ways to avoid plagiarism					
II	Biosafety		9				
	3 Biosafety-Different levels of Biosafety, Biosafety levels of specific						
		Microorganisms;					

	4	Recommended Biosafety levels for Infectious agents and Infected animals, Biosafety Issues in Biotechnology, Biological Safety Cabinets; Containments- Types.	
	5	 Examine the principles and practices of biosafety in laboratory and industrial settings. Evaluate risk assessment methodologies and strategies for mitigating biological hazards. Discuss regulatory frameworks and guidelines for biosafety compliance, including containment protocols and waste management. 	
	6	Basic Laboratory and Maximum Containment Laboratory	
III		Guidelines of Biosafety	9
	7	Guidelines of Biosafety Biosafety guidelines and regulations (National and International) – Operation at National level; GMO's and LMO's – Definition,	

	8	Institutional Biosafety Committee, RCGM, GEAC, for GMO applications in Food and Agriculture,				
	9	Assessment and management of risks associated with GMO				
IV		Bioethics	9			
	10	Bioethics -Introduction. key concepts and principles in bioethics, including autonomy, beneficence, nonmaleficence, and justice. Animal Ethics, Animal Rights, Biotechnology and Ethics				
	11	Ethical issues related to research in embryonic stem cell cloning				
	12	Ethical, Legal and Social Implications (ELSI) of Human Genome Project.				
V	Essentials of scientific experiments					
	13	Values in science, Misconduct in science, Negligence and error, Conflict of interest, Techniques used and treatment of data				
	14	Analyze case studies and real-world examples to understand the practical application of IPR in biotechnology.				
	15	Debate contemporary bioethical issues such as gene editing, and access to healthcare.				

Suggested Reading

- 1. Intellectual Property Rights: A Practical Guide to Content, Protection, and Exploitation" by Stephen Johnson
- 2. "Intellectual Property: A Very Short Introduction" by Siva Vaidhyanathan
- 3. "Intellectual Property in the New Technological Age" by Robert P. Merges and Peter S. Menell
- 4. Bioethics: Principles, Issues, and Cases" by Lewis Vaughn
- 5. "Principles of Biomedical Ethics" by Tom L. Beauchamp and James F. Childress
- 6. "Bioethics: An Introduction" by Marianne Talbot
- 7. Biosafety in Microbiological and Biomedical Laboratories" by Centers for Disease Control and Prevention (CDC) and National Institutes of Health (NIH)
- 8. "Biosafety in Industrial Biotechnology" by Preeti Jain and Rakesh Singh
- 9. "Handbook of Laboratory Health and Safety" by Robert H. Hill Jr. and David W. Smith

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand basics of Intellectual Property Rights and various treaties associated with it at international level	R,U	PSO-2,5
CO- 2	Awareness about legal protection of biotechnological inventions	U	PSO-2,5

CO3	Awareness about Biosafety levels at specific Microorganisms level and biosafety regulations	U	POS5
CO4	Understand Ethical issues related to research in different areas of Biotechnology	U	PSO5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: IPR, bioethics and biosafety Credits: 2:1:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Understood IPR and treaty's	PSO-2,5	R ,U	F, C	L	Р
CO- 2	Awareness about legal protection to Biological inventions	PSO-2,5	U	Р	L	
CO3	Awareness about Biosafety levels	PSO5	U	F	L	
CO4	Understand Ethical issues related to biological research	PSO5	U	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1 PSO2	PSO3 PS	D4 PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	
--	-----------	---------	---------	------	-----	-----	-----	-----	-----	-----	--

CO 1	-	2	-	-	3	-			
CO 2	-	3	-	-	3	-			
CO 3	-	-	-	-	2	-			

CO 4	-	-	-	-	3	-							
------	---	---	---	---	---	---	--	--	--	--	--	--	--

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1	~		1
CO 2	1			1
CO 3	1			1
CO 4	1	\		1

SEMETER IV

University of Kerala

	BIOTECHNOLOGY
Discipline	

Course	UK4DSCBI	T207						
Code								
Course	MOLECUI	LAR BIOLOGY						
Title								
Type of	DSC							
Course								
Semester	IV							
Academic	200 - 299							
Level								
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	4	2 hours	1	2 hours	5			
Pre-		of Biotechnology						
requisites	Basic under	rstanding on Geneti	ics and DNADN	NA structure				
Course	This core-o	course imparts an e	essential foundation	tion for unders	tanding of mechanisms			
Summary	and regulat	and regulations of gene expression at molecular level. Understanding the molecular						
	basis of life	e is very important t	o apply manipu	lation strategies	in the future for genetic			
	engineering	g and genome editir	ıg.					

Detailed Syllabus:

Module	Unit	Content	Hrs					
Ι		Molecular basis of life	8					
	1	History and significant discoveries in molecular biology, Classicexperiments demonstrating DNA as the genetic material						
	2	Structure of DNA, Central dogma of molecular biology						
	3	Eukaryotic chromosomes- molecular organization, nucleosomes.						
	4	Replication of DNA(prokaryotic and eukaryotic), enzymes involved in DNA replication, Replication fork, action of telomerase.						
II		Gene expression I						
	5	Transcription(Prokaryotic and Eukaryotic)- mechanism						
	6	RNA Polymerase, promoter, transcription factors						
	7	Types of RNA-mRNA, tRNA, rRNA and small nuclear RNA (snRNA), mi RNA.						
	8	Post-transcriptional modification of mRNA in eukaryotes-capping, tailing and splicing mechanisms.						
III		Gene expression II						
	9	Organisation of prokaryotic and eukaryotic gene- split genes, introns and exons, reading frame, enhancers and silencers						

11 12	Translation- mechanism of translation in prokaryotic and eukaryotic mRNAPost translational modification of proteins (CS), Extrachromosomal Inheritence	
10	Genetic code - properties of genetic code, Codons, codon assignment, redundancy and wobble theory(CS)	

	13	Prokaryotic gene regulation, operon, (lac and trp operon), catabolic repression, attenuation	
	14	Eukaryotic gene regulation; levels of control of gene expression, epigenetics (CS)	
	15	Regulation of RNA processing, mRNA degradation and protein degradation control, RNA interference, microRNAs, RNA interference, Translational regulation: riboswitches, RNA-binding proteins	
	16	Genome Editing Technologies Zinc finger nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) CRISPR-Cas9 system: mechanism and applications	
	17	Non-coding RNAs: long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) Synthetic biology: designing biological systems for specific purposes	
V		Tools and Techniques in Molecular Biology	9
	18	DNA isolation: Principle and Protocol, Purification and quantification methods- UV Spectrophotometry	
	19	Gel electrophoresis- Principle and applications in separating macromolecules.	
	20	PCR, Southern Blotting, Microarray-mRNA isolation, cDNA synthesis, expression profiling	
	21	Protein isolation, purification, western Blotting, enzyme assays	

Practicals 30 hrs- (Essential Experiments (15 hrs), Group Work (15 hrs)

Essential Experiments

- 1. Familiarisation of instruments and equipments used in molecular biology laboratory
- 2. Preparation of solutions and buffers for DNA isolation
- 3. Isolation of Genomic DNA from a suitable source- bacteria, plant or animal tissue
- 4. Examination of the purity of DNA by agarose gel electrophoresis.
- 5. Quantification of DNA by UV-spectrophotometer
- 6. Isolation and purification of plasmid DNA
- 7. Agarose gel analysis of plasmid DNA
- 8. Extraction of Protein and RNA from plant samples.
- 9. Visit a molecular biology laboratory within the entire course tenure

Suggested Reading:

1. Applied Molecular genetics – R L Miesfeld; Wiley.Liss, New Delhi.

3. Essential molecular Biology- A practical Approach, T A Brown; Oxford, New York

4. Gene VIII- Benjamin Lewin; Oxford University Press.

5. Molecular Biology, PS Verma and VK Agarwal, S.Chand & Company pvt Ltd, New Delhi

6. Introduction to Molecular biology- P. Paolella; McGraw Hill, New York

7. Molecular Biology of the gene – Watson, Baker, Bell Gann, Lewinw, Losick; Pearson Education Pvt.Ltd, New Delhi

8. Molecular cell biology, H S Bhamrah; Anmol Publications Pvt. Ltd., New Delhi.

9. PCR 3 - Practical Approach – C. Simon Hearington& John J O'Leary; Oxford, New York

10. Principles of Gene manipulation- R.W.Old& S.B. Primrose; Blackwell Scientific Publications

11. M. R. Green, J. Sambrook. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, ed. 4, 2012).

12. M. M. Burell. Enzymes of Molecular Biology (Humana Press, 1993).

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the concept of gene, its structure and expression	R, U	PSO-1,2
CO-2	Differentiate the mechanism of DNA replication in prokaryotes with eukaryotes	U, An	PSO1
C0-3	Understand the gene regulation mechanisms in a living cell	R, U	PSO1,PSO3
CO-4	Analyse the purity of a given DNA sample by UV spectrophotometry	U, An	PSO3,4
CO-5	Understand how the genome is compacted to chromosome level	R, U	PSO3,4
CO-6	Handle DNA samples for quantification, subjecting the sample to separation by gel electrophoresis	An, Ap	PSO3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

CO No.			Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the concept of gene	PSO-1,2	R, U	F, C	L	
CO-2	Differentiate prokaryotic and eukaryotic replication	PSO1	U, Ap	С, Р	L	
CO-3	Understand the gene regulation	PSO1,PSO3	U, An	F,C	L	
C0-4	Analyse DNA sample purity	PSO3,4	An,Ap	Р		Р
CO-5	Understand genome compaction	PSO3,4	R,U	F,C	L	
CO-6	Handling DNA, for quantification and gel electrophoresis	PSO3	An,Ap	С, Р		Р

Name of the Course: Molecular Biology Credits: 2:1:2 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3		PSO 5		PO 1				PO 5	PO 6
	1	Z	5	4	3	0	1	2	3	4	7	0

C O 1	1	3	-	-	-	-			
C O 2	2	-	-	-	-	-			
C O 3	2	-	3	-	-	-			
C O 4	-	-	2	3	-	-			
C O 5	-	-	3	3	-	-			
C O 6	-	-	3	-	-	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Continuous Comprehensive Assessment:

Formative :

• Interactive Quiz

- Group Discussions
- Assignment
- Student Seminar
- Observation of practical skills
- Journal Club presentations
- Punctuality in lab, and time management in completing assigned laboratory tasks

Summative

- Internal test papers
- Laboratory book/ report
- Periodical lab tests

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Observation of practical skills	End Semester Examinations
CO 1	1			1
CO 2	1			1
CO 3	1			1
CO 4	1		✓	1
CO 5		1		1
CO 6			1	

Discipline Specific Elective courses 200-299, DSE2

University of Kerala

BIOTECH	NOLOGY						
UK4DSEB	UK4DSEBIT204						
BIOINFOF	RMATICS						
DSE							
IV							
200 - 299.							
Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
	week	per week	per week				
4	2 hours	1	2	5			
Essentials of	of biotechnology, N	Iolecular Biolo	gy				
Bioinforma	atics is a multidisci	plinary subject	that is a combin	ation of studies related			
	to analyse and process data using bioinformatics tools. This course will familiarise						
•	students to the importance of role of <i>omics</i> in the better learning of Systems Biology						
	1			e . e.			
	•	•					
1	-			• · · · · ·			
	UK4DSEB BIOINFOF DSE IV 200 - 299. Credit 4 Essentials bioinforma to Life Sci Engineerin students of to analyse students to in a holistic will help t	IV 200 - 299. Credit Lecture per week 4 2 hours Essentials of biotechnology, M Bioinformatics is a multidiscipto Life Science, Computer La Engineering. This course is in students of biotechnology, to e to analyse and process data u students to the importance of r in a holistic way. The basic le	UK4DSEBIT204 BIOINFORMATICS DSE IV 200 - 299. Credit Lecture per Tutorial per week 4 2 hours 1 Essentials of biotechnology, Molecular Biolo Bioinformatics is a multidisciplinary subject to Life Science, Computer Languages, Data S Engineering. This course is intended to introc students of biotechnology, to empower them v to analyse and process data using bioinform students to the importance of role of <i>omics</i> in in a holistic way. The basic learning of this B will help them to pursue a career in Bio A	UK4DSEBIT204 BIOINFORMATICS DSE IV 200 - 299. Credit Lecture per Tutorial Practical week per week per week 4 2 hours 1 2 Essentials of biotechnology, Molecular Biology Bioinformatics is a multidisciplinary subject that is a combin to Life Science, Computer Languages, Data Science, Syster Engineering. This course is intended to introduce the subject students of biotechnology, to empower them with the skills of to analyse and process data using bioinformatics tools. This students to the importance of role of <i>omics</i> in the better learn in a holistic way. The basic learning of this Bioinformatics c will help them to pursue a career in Bio Analytics, Data			

Detailed Syllabus:

Module	Unit Content	Hrs
Ι	introduction to bioinformatics	6

1	History and evolution of bioinformatics, Scope and impact of bioinformatics in Life Science research.	
2	Introduction to Systems Biology, Generation of large scale molecular biology data	
3	Databases and DBMS, Biological Databases- Nucleic acid databases (NCBI, DDBJ, and EMBL). Protein databases (Primary, Composite, and Secondary).Specialized Genome databases: (SGD, TIGR, and ACeDB). Structure databases (CATH, SCOP, and PDBsum). Data mining	

	4	Fundamentals of programming languages and statistical methods in Bioinformatics	
II		sequence alignment	10
	5	Sequence homology Vs Similarity	
	6	Sequence alignment- Global and Local alignment- Dynamic programming	
	7	Pairwise alignment (BLAST and FASTA Algorithm)	
	8	Multiple sequence alignment (Clustal W and PRAS algorithm).	
III		structural bioinformatics	10
	9	Levels of protein structure, structure prediction methods for proteins' secondary (Chou Fasman) and tertiary structures (Homology Modeling)	
	10	Introduction to Molecular Docking and docking softwares.	
	11	Methods for presenting large quantities of biological data: sequence viewers (Artemis, SeqVISTA), 3D structure viewers (Rasmol, SPDBv, Chime, Cn3D, PyMol), Anatomical visualization.	
	12	Applications of Structural Bioinformatics	
IV		Applications I: omics	10
	13	Genomics: Genome architecture, types of genome & its components, genome annotation, Parsing Structural Genomics, Functional genomics, Comparative Genomics, Metagenomics	
	14	Metabolomics: Concept of Metabolome and Metabolic pathways(KEGG)	
	15	Proteomics – technology of protein expression analysis, 2D PAGE, MS, Protein identification through database search, PDB	
	16	Applications of genomics and proteomics	
V		Applications II	9
	17	Bioinformatics tools for Phylogenetic analysis- tree construction- distance based methods and character based methods, PHYLIP	
	18	Drug Discovery and design : Target identification , Target Validation , Lead Identification , lead optimization,	

	Chemoinformatics tools for drug discovery; ChemBank, PUBCHEM	
19	AI driven tools of Bioinformatics; DRAGEN, Rosetta, DeepVariant	
20	Future potential of Bioinformatics	

Practicals 30 hours-Essential practical -15 0hrs, group or individual work 15 hours

Essential Experiments

- 1. Sequence Analysis: Sequence Alignment: Use tools like BLAST, ClustalW, or MUSCLE for pairwise or multiple sequence alignments. Analyze the results to identify conserved regions, mutations, or evolutionary relationships.
- 2. Sequence Searching: Perform database searches using tools like NCBI BLAST or HMMER to identify similar sequences in large databases such as GenBank or UniProt.
- 3. De Novo Genome Assembly: Assemble short reads generated from high-throughput sequencing platforms (e.g., Illumina) into longer contiguous sequences (contigs) using assemblers like Velvet, SPAdes, or SOAPdenovo.
- 4. Phylogenetic Tree Construction: Construct phylogenetic trees using molecular sequence data (DNA or protein) with programs like PHYLIP, RAxML, or MrBayes.

Suggested reading

- 1. Statistical Methods in Bioinformatics: An introduction, Ewens, W. J. and Grant, G. R. Springer, 2001
- 2. Programming Languages-Concepts and Constructs, Sethi R, 2nd Edition, Pearson
- 3. Introduction to Bioinformatics -5th Edition, Lesk A. M, Oxford
- 4. From Genes to Genomes, Concepts and Applications of DNA Technology, third edition, Jeremy W. Dale, Malcolm von Schantz, Nicholas Plant, Wiley Blackwell, 2011
- 5. Introduction to Proteomics: Tools for the New Biology, Liebler D., Springer Science + Business media, LLC
- 6. "Introduction to Data mining with case studies", G.K. Gupta, PHI Private limited, New Delhi, 2008.
- 7. An Introduction to Bioinformatics Algorithms Neil C. Jones and Pavel A. Pevzner
- 8. Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Robert Gentleman, Vincent Carey, Wolfgang Huber, Rafael Irizarry, Sandrine Dudoit, Oxford University Press
- 9. "Bioinformatics: Sequence and Genome Analysis" by David W. Mount, 2nd edition, 2004
- 10. Bioinformatics A Practical Guide to the analysis of Genes and Proteins-Andreas Baxevanis&B.F.Francis Ouellette. ISBN: 978-0-471-46101-2, Wiley

- 11. Developing Bioinformatics Computer Skills, first edition, 2001, Jambeck P, Gibas .C. ISBN: 1-56592-664-1, O'Reilly
- 12. Primrose S.B, TwymanR.m., and Old R.w., Principles of gene manipulations, 6th ed, 2002, Blackwell publishers, Oxford.
- 13. S C Rastogi, N Mendiratta and P Rastogi, "Bioinformatics: Methods and Applications", ISBN : 978-81-203-4785-4, PHI Learning Private Limited, 2015.
- 14. Attwood, T.K., Parry, D.J., Smith, Introduction to Bioinformatics, Pearson Education, 2005.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the scope and impact of Bioinformatics in Data analysis in life science research	U, An	PSO1
CO-2	Demonstrate different categories of databases and their utility	R, U, An	PSO4
CO-3	Understand the various applications of omics approaches	U, Ap	PSO4
C0-4	Use Molecular Visualisation tools to study molecular structures proteins	U, Ap	PSO1,4
CO-5	Compare and analyze biological sequences to interpret the results of their analyses.	U, An, E	PSO3,4
CO-6	Search and retrieve information from genomic and proteomic databases by data mining tools	U, Ap	PSO3,4

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Bioinformatics Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO No. CO PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
---------------------	--------------------	-----------------------	--------------------------------	------------------

CO-1	Understand the scope and impact of Bioinformatics	PSO1	U, An	F, C	L	
CO-2	Demonstrate different categories of databases	PSO4	R, U, An	F, C, P	L	
CO-3	Understand the various applications of omics approaches	PSO4	U, Ap	F,C, P	L	
C0-4	Use Molecular Visualisation tools to study molecular structures proteins	PSO1,4	U, Ap	F,C, P	L	Р
CO-5	Compare and analyze biological sequences	PSO3,4	U, An, E	F,C, P	L	-
CO-6	Search and retrieve biological informations	PSO3,4	U, Ap	С, Р	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P S O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
--	------------------	----------	----------	----------	----------	----------	---------	---------	---------	---------	---------	---------	---------	--

CO 1	3	-	-	-	-	-	1				
CO 2	-	-	-	3	-	-	2				
CO 3	-	-	-	2	-	-	2				
CO 4	2	-	-	3	-	-	3	1			
CO 5	-	-	3	3	-	-	3				
CO 6	-	-	3	3	-	-	2				1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Quiz / Assignment/ Quiz/ Discussion / Seminar/Midterm Exam

Programming Assignments/Final Exam /Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1	~		1
CO 2	1	1		✓
CO 3	1			✓
CO 4				1
CO 5				✓

CO 6	1		1

•

Value added Courses 200-299

University of Kerala

	DIOTECL	INOLOGY			
Discipline	DIUTECI	INOLOGI			
Course Code	UK4VACI	217201			
Course Title		BORATORY PR	ACTICES AND		NITROL IN
Course Thie	BIOTECH		ACTICES AND	QUALITIC	JINT KOL IIN
Type of	VAC	NOLOGI			
Course	VAC				
	IV				
Semester					
Academic	200 - 299				
Level					
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week
Details		week	per week	per week	
	3	2 hours	1		3
Pre-	Essentials	s of Biotechnolo	gy, Microbiolo	ogy	
requisites					
Course	This course	e provides student	s with a compre	hensive unders	tanding of good
Summary					field of biotechnology
Summery		ents will learn the			
	implement	ing QC measures	to ensure the rel	liability, reprod	ucibility, and accuracy
	·	ental results in bio		• • •	•
	, i		e		•

Detailed Syllabus:

.

Module	Unit	Content	Hrs			
Ι		Introduction to Good Laboratory Practices (GLP)	9			
	1	Historical perspective, Definition, purpose, Principles				
	2	Lab rules for best lab practices, aseptic lab procedures, Facility design, equipment calibration and maintenance, personnel training, and responsibilities.				
	3	Documentation and Record Keeping -maintenance of records and log books, Equipment Calibration and Maintenance.				
	4	Handling, sampling, storage and SOP.				
II		Biosafety, hazards, risks and management				
	5	Types of hazards – Biological hazards, physical hazards, chemical hazards, Symbols in biohazards.				

i .			1
	6	Risk assessment and management- containment facility, biosafety level and its classification. Assessment of biological hazards, Risk assessment process examples and tools, Biosafety measures and Guidelines.	
	7	Types of laboratory wastes and methods of disposal of laboratory wastes- Chemical, Physical and Biological.	
	8	Classification of chemicals and hazard levels.	
III		Regulations in QC and validation	9
	9	Overview of GLP and QC regulations, guidelines, and standards applicable in biotechnology. Government regulations and amendments and national and international standards – FDA, ISI, Codex , ISO,OECD.Role of FDA in India.	
	10	Hazard analysis and quality control analysis – HACCP- Significance, Seven Principles– Significance GLP.	
	11	Activities – Design qualification (DQ), Installation qualification (IQ), Operational qualification (OQ), Performance qualification (PQ)	
IV		Quality control in biotechnology industry	9
	12	Implementation of QA/QC systems to monitor and ensure the quality of processes, products, and data. Quality management and quality assurance in BI	
	13	Identification, assessment, and mitigation of potential risks to quality and compliance. GMP as an element in QC- Importance of QC in BI	
	14	Principles and procedures for validating and verifying analytical methods used in biotechnology. Sampling, inspection, testing, of raw and packaging materials, product, release and rejection of batches.	
V		Assesment	9
	15	Write an overview of quality management in a Pharmaceutical/Food industry/Beverage industry after visiting one of your choice.	
		Case Studies and Best Practices: Examination of real-world case studies and best practices in GLP and QC implementation within the biotechnology industry.	

Suggested Reading

- 1. "Good Laboratory Practice Regulations" by CRC Press
- 2. "Quality Control in the Pharmaceutical Industry" by CRC Press
- 3. "Laboratory Quality Management System: Handbook" by WHO
- 4. "Statistical Methods for Quality Control" by John Wiley & Sons
- 5. "Good Clinical, Laboratory and Manufacturing Practices: Techniques for the QA Professional" by CRC Press
- 6. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines
- 7. United States Pharmacopeia (USP) standards
- 8. Food and Drug Administration (FDA) regulations
- 9. World Health Organization (WHO) guidelines on GLP and QC in biotechnology
- 10. "Good Clinical, Laboratory and Manufacturing Practices: Techniques for the QA Professional" by CRC Press

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Explain the significance of adhering to good laboratory practices (GLP) in biotechnological research and industry and understand the principles and methods of GLP	U	PSO1
CO- 2	Classify the different types of hazards, biosafety levels, wastes, assess the risks and evaluate the various biosafety levels in handling the same.	An, A	PSO3
CO3	Understand the various regulation at national and international levels in QC and validation and identify the principles of HACCP	R, U	PSO3
CO4	Describe the significance and methods of QC in biotechnology industry	U	PSO5

Note: 1 or 2 COs/module

Name of the Course: Good laboratory practices and quality control in biotechnology Credits: 2:1:0 (Lecture:Tutorial:Practical)

CO- 1	Understood principles of good Lab Practices	PSO1	U	F	L	
CO- 2	Understood about Biohazards and different Biosafety levels	PSO3	An, A	F	L	Р
CO3	Understand the various regulation at national and international levels in QC	PSO3	R, U	F	L	
CO4	Describe the significance in Biological research	PSO5	U	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P S O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1	2													
CO 2			3											
CO 3			3											
CO 4					3									Х

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\	1		✓
CO 2	~	1		✓
CO 3	~	1		✓
CO 4	1			✓

Skill enhancement Courses 200-299

•

University of Kerala

Discipline	BIOTECH	INOLOGY							
Course	UK4SECB	UK4SECBIT201							
Code									
Course	BASICS	BASICS OF PHYTOCHEMISTRY AND MEDICINAL PLANT-							
Title	BASED	INDUSTRY							
Type of	SEC								
Course									
Semester	IV								
Academic	200 - 299.								
Level					-				
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week				
Details		week	per week	per week					
	3	2 hours	1	-	3				
Pre-	Biochemisty, Bioinstrumentation								
requisites									
Course	The course gives a basic idea on phytochemistry and various techniques								
Summary	involved in harnessing active constituents from plants and looking for their								
	potential a	applications in pha	armaceutics.						

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι	Int	roduction to phytochemistry and medicinal plant-based industry	9			
	1	Natural products from plants, History				
	2 Phytochemical evaluation of plant drugs, morphological, organoleptic, microscopic, and biological study of aromatic plants					
	3	Applications of Phytochemistry and Phytochemicals				
	4 medicinal and aromatic plant-based industries – phytopharmaceutical products, use in indigenous medicine, bioprospecting and introduction to access and benefit sharing					
	5	Pharmacology and pharmacognosy				
II	II Extraction and characterisation techniques		9			
	5	Types and principles of extraction – cold, hot - Soxhlet, steam distillation, solid-liquid extraction, Clevenger apparatus.				
	6	Separation and characterisation techniques- Chromatography types- TLC, HPLC, GC-MS, HPTLC, UV-visible spectroscopy, IR spectroscopy, NMR.				
III		Active principles from plants	9			
	7	Primary and secondary metabolic pathways (shikimic – chorismic, mevalonate pathways) and metabolites				
	8	Types and features of active constituents, quality purity and pharmaceutical use.				
	9	Classification of phytochemicals, Sources, Biosynthesis, extraction, isolation, identification and therapeutic applications-Alkaloids, Flavonoids, Phenolics, Terpenes, Volatile oils.				
	10	Adulteration and alternation- Detection methods.				

	11	Metabolic Engineering				
IV		Type study of a few important medicinal plants	9			
	12	Utilization of Medicinal Plants in Pharmaceuticals, Drug discovery				
		from natural sources, Development of plant-based				
		medicines,Formulation and dosage forms				
	13	Study of medicinal plants, methods of extraction, therapeutic uses-				
		Ocimum sanctum, Aegle marmalos, Cymbopogancitratus, Curcuma				
		longa, Santalum album, Aloe barbadensis				
V		Herbal Products and Nutraceuticals	9			
	14	,Dietary supplements,Functional foods,Herbal cosmetics				
	15	Regulatory Aspects and Quality Control, Good Manufacturing				
		Practices (GMP), Quality control parameters (purity, potency,				
	identity),Safety and toxicological assessment,Ethical considerations					
	in wild harvesting					
	16	Case study report of Taxol, artemisinin, Antioxidants from seaweeds				

Suggested reading

- 1. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis by JB Harborne. Springer, 1998.
- 2. Krishnaswamy, N. R., 2003. Chemistry of Natural Products. Universities press, Hyderabad
- 3. Daniel, M., 1991. Methods in Plant chemistry and Economic Botany. Kalyani publishers, New Delhi
- 4. Phytochemistry- Vol 1- Fundamentals, Modern techniques, and applications, ChukwuebukaEgbuna, Ifemeje, J. C (Editors). CRC Taylor & Francis, 2019.
- 5. Biren, Shah and Seth, A. K. Textbook of Pharmacognosy and Phytochemistry. New Delhi: Elsevier, 2010.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Summarise the various natural products and apply the methods of phytochemical evaluation. Identify the various process in bioprospecting and importance of access and benefit sharing.	R, U, A	PSO1
CO- 2	Distinguish among the various extraction and characterisation techniques of phytochemicals	An	PSO1

CO3	Understand the various metabolic pathways and classify among the various phytochemicals involved and list the pathway manipulation techniques	R, U, A	PSO3
CO4	Identify a few important medicinal plants and compare the various methods of extraction of phytochemicals and their uses.	R, U	PSO1
CO5	Demonstrate the various techniques for extraction and analysis of any one phytochemical of choice	А	PSO3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Basics of Phytochemistry and Medicinal plant-based Industry Credits: 2:1:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO1	Understand phytochemicals and its various application	PSO1	R, U, A	F	L	
CO- 2	Understand the extraction principles of various phytochemicals	PSO1	An	F	L	
CO3	Awareness about metabolic pathway and its manipulation for improved production and extraction	PSO3	R, U, A	С	L	
CO4	Evaluate the traditional medicinal plants and bioactives	PSO1	R, U	F	L	Р
CO5	Skilled in phytochemical extraction methods	PSO3	А	Р	-	Р

	PS O1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2													
CO 2	3													
CO 3			3											
CO 4	2													
CO 5			3											

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			✓
CO 2	1			<i>✓</i>
CO 3	1	1		✓

CO 4	1		✓
CO 5	1		\checkmark

UK4INTBIT200 SUMMER INETRNSHIP Credit-2

All the students shall undergo internship/apprentiship in a firm/industry or training in labs with faculty and researchers in their institution or other HEIs/research institutions during the summer term. The internship has two credits and shall be completed in the first three years of FYUGP. The department council of the HEI shall approve the firm/Institution from where the student shall undergo an internship after verifying the quality and geniness of the firm /Institution

SEMESTER V

University of Kerala

Discipline BIOTECHNOLOGY

Course	UK5DSCB	UK5DSCBIT300					
Code							
Course	RECOMB	INANT DNA TE	CHNOLOGY				
Title							
Type of	DSC						
Course							
Semester	V						
Academic	300 - 399						
Level							
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week		
Details		week	per week	per week			
	4	2 hours	1	2 hours	5		
Pre-	Basic Know	wledge in Cell bio	ology, genetics	s & molecular l	biology		
requisites							
Course	This core-	This core-course aims to acquaint students with the tools and techniques					
Summary	employed	employed in genetic engineering and recombinant DNA technology. This					
					echnique in basic and		
	applied fie	lds of biological r	esearch involv	ving gene mani	pulation.		

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to gene cloning:	6
	1	History and milestones in the development of recombinant DNA technology	
	2	Restriction endonucleases, classification and general characteristics of RE	
	3	Other DNA modifying Enzymes- DNA polymerase, DNA ligase, alkaline phosphatase, Polynucleotide kinase, Terminal transferase, Reverse Transcriptase	
	4	Adaptors, Linkers, Homopolymer tailing	
II		Vectors: the vehicle for cloning	8
	5	Ideal features of a vector	
	6	Various types of cloning vectors: Plasmid cloning vectors- pBR322, pUC18, and pUC19; Expression vectors- pET vector Bacteriophage cloning vectors – λ phage cloning vectors, M13 phage-based vector Combination vectors- Phagmid and Cosmid vectors	

7	Artificial Chromosomes: Bacterial artificial chromosome vectors (BACs), Yeast artificial chromosome vectors (YACs) Applications of BAC and YAC	
---	---	--

	8	Shuttle vectors for animals (Adenoviral, Retroviral vectors) and plants (Caulimo viral, TMV vectors), Mammalian vectors for gene therapy	
III		rDNA- Construction and Screening	12
	9	Construction of recombinant DNA; host cells, competent cells, bacterial transformation - methods	
	10	Screening methods of transformed cells & recombinants Insertional inactivation, Blue-white screening, antibiotic screening, colony hybridization, colony PCR, Immunological methods	
	11	DNA libraries: genomic DNA libraries and cDNA libraries- construction & applications	
	12	Various methods of genetic transformation in eukaryotic cells- Direct gene transfer and vector mediated gene transfer	
IV		Techniques for genome analysis and applications	10
	13	Molecular hybridization techniques: RFLP, AFLP, RAPD, Southern hybridization	
	14	PCR: Principle, types(Real time, RT) and applications	
	15	DNA sequencing: Principle and applications, Genome sequencing methods- Maxam-Gilbert method, Sangers sequencing, NGS. Human genome project	
	16	Gene expression analysis – Northern hybridization, Micro array	
V		Biosafety and ethics in Genetic engineering	9
	17	Impact of transgenic organisms in agriculture, medicine, and environment	
	18	Bioethics: issues with genome modification-case study examples: terminator seeds, environmental impact	
	19	HGP-ELSI	
	20	BSL categories for ensuring appropriate containment for rDNA laboratories	

Practicals- (30 Hours)-[Essential Experiments (15 Hours), Group/Individual Experiments (15 Hours)]

Essential Experiments

- 1. Preparation of the reagents for rDNA experiments
- 2. Purification of Plasmid from bacterial Cultures
- 3. Estimation of plasmid DNA by UV-VIS spectrophotometer
- 4. Restriction Digestion of pUC 18 and band analysis by agarose gel electrophoresis
- 5. Ligation of DNA using ligase
- 6. *E. coli* Competent cell preparation & Transformation with pUC 18 and selection of ampicillin resistant clones
- 7. Extraction and purification of Genomic DNA from various sources
- 8. Quantification of DNA using diphenyl amine method

- 9. Problem solving assignments
- 10. Virtual lab on recombinant DNA experiments
- 11. Research lab visit

Suggested Reading

- 1. Molecular Biotechnology, 1st Edition (2016) Dehlinger CA, Jones & Bartlett Learning
- Principles of gene Manipulation, 7th Edition (2013) Primrose SB, Twyman RM, Wiley Blackwell sciences
- 3. Molecular Biotechnology, Principles and Applications of recombinant DNA, 4th Edition (2010)- Glick BR, Pasternak J J and Pattern CL, ASM Press, Washington D
- Gene Cloning & DNA Analysis an Introduction, 7th Edition (2016) Brown TA, Wiley Blackwell publishers
- 5. Introduction to Genetic Engineering & Biotechnology, 1st Edition (2010) Nair, A. J., Jones & Bartlett Publishers, Inc
- 6. Modern concept of Biotechnology, 1st Edition (1998) H D Kumar; Vikas Publishing House, Pvt. Ltd., New Delhi.
- 7. Biotechnology, B. Sc. Edition (2016) Singh BB, Kalyani Publishers, New Delhi

Course Outcomes

No.	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO-1	Understand the basic tools required to conduct genetic engineering.	R, U	PSO-1,2

CO-2	Familiarise to the modern tools and techniques for manipulation and analysis of genomic sequences.	U, Ap	PSO1,PSO3
CO-3	Understand the Biosafety and ethics concerns connected with genetic engineering.	U, An	PSO5
CO-4	Design a genetic engineering experiment, selecting appropriate tools	Ap, C	PSO3
CO-5	Apply rDNA technology in Biotechnological research	Ap	PSO3,PSO4
CO-6	Handle vectors, enzymes and host cells to conduct rDNA experiments	Ap	PSO3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

(Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand the basic tools required to conduct genetic engineering	PSO1, PSO 2 PO-1, PO-2	R, U	F, C	L	
CO-2	Familiarise to the modern tools and techniques for manipulation and analysis of genomic sequences	PSO -1, PSO-3 PO-1, PO-6	U, Ap	С, Р	L	Р
CO-3	Understand the Biosafety and ethics concerns	PSO5 PO -8	U, An	F,C	L	

	connected with genetic engineering					
CO-4	Design a genetic engineering experiment, selecting appropriate tools	PSO3 PO-3	Ap, Cr	Р, М	-	Р
CO-5	Apply rDNA technology in Biotechnologi cal research	PSO3,PSO- 4 PO-3, PO-6	Ар	Р, М	-	Р

CO-6	Handle vectors, enzymes and	PSO3	Ар	Р, М	-	Р
	host cells to conduct rDNA experiments	PO-6				

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
C O 1	3	2	-	-	-	-	3	2						
C O 2	3	-	2	-	-	-	2					3		

C O 3	-	-	-	-	3	-					3
C O 4	-	-	2	-	-	-		3			
C O 5	-	-	3	2	-	-		2		3	
C O 6	-	-	3	-	-	-				3	

Correlation Levels:

Level	Correlation
-	Nil

1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1	1		1
CO 2	1	~	1	✓
CO 3	1	1		 Image: A start of the start of
CO 4		✓	\	✓

CO 5	√	1	1
CO 6		~	1

University of Kerala

Discipline	BIOTECH	INOLOGY						
Course	UK5DSCE	BIT301						
Code								
Course	FOOD AN	ND INDUSTRIA	L BIOTECH	NOLOGY				
Title								
Type of	DSC							
Course								
Semester	V							
Academic	300 - 399							
Level			1	1				
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	4	3 hours	1	-	4			
Pre-	Basic of N	/licrobiology						
requisites		8/						
Course	This cours	se encompasses a	an interdiscipl	inary field that	t integrates principles			
Summary	of biology	y, chemistry, eng	gineering, and	technology to	o develop innovative			
	solutions	for the food tech	nology and ir	ndustrial proce	ss. This course deals			
	with vario	with various aspects of biotechnological applications in industrial production						
	of micro	bial products,	food produc	ction, preserv	vation, and quality			
	enhancem	ent						

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι	Intro	duction to Industrial Biotechnology	8
	1	History and scope of Industrial Biotechnology	
	2	Biotechnology industries in India	
	3	Industrial Microorganisms: Screening, Selection, characterization, and strain improvement for industrial applications	
II		Bioreactors, Upstream and Downstream processing	15
	4	Bioreactor Design and Operation: Principles of bioreactor design, types of bioreactors, and parameters influencing bioprocesses	

			1
		Fermentation Technology: Optimization of fermentation processes and scale-up strategies	
	5	Upstream Processing: Media for fermentation, characteristics of ideal production media, media sterilization, aeration, pH, temperature Bioprocess Monitoring and Control: Techniques for monitoring cell growth, product formation, and controlling bioreactor conditions Batch fermentation, Continuous fermentation, Chemostaticcultures	
	6	Downstream processing: Downstream processing and product recovery, Different physical and chemical methods for the separation of fermentation products	
III		Industrial production of biomolecules	13
	7	Production of therapeutic proteins, antibodies, and vaccines – General strategy Microbial production of antibiotics-Penicillin, vitamins- B12, amino acids- Glutamic acid; Organic acid-Citric acid; Beverages- beer; solvents- butanol	
	8	Agricultural waste and food industry wastes as the substrate for fermentation, solid state fermentation; production of single cell proteins, microbial production of enzymes- protease and amylase; Immobilization of cells and enzymes-applications	
IV		Food Biotechnology	12
	9	Microbial contamination and foodborne pathogens, food borne infections and ,intoxications Biotechnological approaches for enhancing food quality and safety- detection of pathogens, toxins, and allergens	
	10	Microbial cultures and starter cultures in food fermentation	
	11	Food preservation- principles of preservation of foods, Role of biopreservation -Role of lactic acid bacteria, bacteriocins, and probiotics in preservation Biocontrol mechanisms and applications- Hurdle Technology- competitive microflora, bacteriocins, and enzymatic inhibitors Genetic approaches to enhance microbial preservation	
	12	Microbs in food industry- Dairy Biotechnology- dairy products, Industrial process of cheese making, spoilage, milk borne diseases Definition and classification of functional foods	
V		Case Studies and Industry Perspectives	12
	13	Concepts and examples of Functional foods, and Nutraceuticals	
	14	Case studies on Production of bioactive components , highlighting successful applications of industrial biotechnology	
	15	Visit to different industries	

Suggested Reading

- 1. Food Microbiology, 2nd Edition (2002) Adamas MR and Moss MO; Panima Publishing Corporation, New Delhi.
- 2. Fermentation technology, 3rd Edition (2016) Stanbury P F, Whitaker A, Hall S J, Butterworth-Heinemann
- Food Microbiology, 5th Edition (2017) Frazier WC, Dennis C. Westhoff and N.M. Vanitha, McGraw Hill Education
- Microbiology, 8th Edition (2011) Prescott L. M., Harley, J. P., and Klein D. A. Mc Graw Hill, New York
- 5. Industrial Microbiology, 2nd Edition (2022) Patel A H, Laxmi Publications
- 6. Food Processing: Biotechnological Applications, Reprint Edition 2015 -Marwaha SS and Arora JK, Asiatech Publishers Inc., New Delhi
- 7. Modern concept of Biotechnology, 1st Edition (1998) H D Kumar; Vikas Publishing House, Pvt. Ltd., New Delhi.
- 8. Industrial microbiology, 2nd Edition (2019) Casida L E, New Age International Private Limited

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Describe the selection of industrially important microbes for production of biomolecules for human welfare	U	PSO-1,2
CO- 2	Design a controlled environment for microbes for optimum growth and production	R, U, C	PSO-3
CO3	Evaluate various methods for recovery and purification of bioproduct after fermentation	U, E	PSO-3, PSO-5
CO4	Aware about application of industrial biotechnology in various field of biotechnology such as fermented food production	U	PSO-1
CO5	Identify biotechnology industries in India and its opportunities	An	PSO-5

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Food and Industrial Biotechnology Credits: 3:1:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Describe the selection of industrially important microbes for production of biomolecules for human welfare	PSO-1, PSO-2 PO-1, PO-2	U	F, C	L	-
CO- 2	Design a controlled environment for microbes for optimum growth and production	PSO-3 PO-3	R, U, C		L	
CO3	Evaluate various methods for recovery and purification of bioproduct after fermentation	PSO-3, PSO-5 PO-2	U, E		L	
CO4	Aware about application of industrial biotechnology in various field of biotechnology such as fermented food production	PSO-1 PO-1	U	F	L	-
CO5	Identify biotechnology industries in India and its opportunities	PSO-5 PO-6	An	М	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	3	2				
CO 2	-	-	3	-	-	-			2			

CO 3	-	-	3	-	2	-		2		
CO 4	3	-	-	-	-	-	3			
CO5					2					1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			1
CO 2	1	~		 Image: A set of the set of the
CO 3	1	1		 Image: A set of the set of the
CO 4		1		1
CO5	1	1		

Uuniversity of Kerala

Discipline	BIOTECH	NOLOGY						
Course	UK5DSCB	UK5DSCBIT302						
Code								
Course	IMMUNO	LOGY						
Title								
Type of	DSC							
Course								
Semester	V							
Academic	300 - 399.							
Level								
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	4	3	1	-	4			
Pre-								
requisites		wledge in Cell Bi	••	-				
Course	This cours	se deals with the	e complex me	echanisms of t	the immune system,			
Summary	exploring	both fundament	tal principles	and applicat	ion level topics in			
	immunology. Through a combination of lectures, discussions, and activities,							
					of the cellular and			
				tem, their roles	s in host defense, and			
	their dysre	gulation in diseas	se states.					

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Immunology	12
	1	Historical perspective and development of basic concepts in	
		immunology	
	2	Immune system and immunity	
		Organs and cells of the human immune system - Structure and	
		role in immunity	
	3	Types of immunity: Innate and specific or acquired immunity;	
		Humoral immunity and cell mediated immunity	
	4	Major Histocompatibility complex- types and functions	
	5	Innate immune receptors: Toll-like receptors, cytokines,	
		chemokines ,inflammasome research (case study)	
	6	Complement- Properties and activation pathways, Classical,	
		Lectin & Alternative pathway	
II		Antigen and Antibody	12

1	1		-
	7	Antigens, immunogens, haptens, Adjuvants	
	8	Immunoglobulins- structure and types of Immunoglobulins	
		Isotypes, allotypes and idiotypes	
	9	Genetic basis of antibody diversity, Clonal proliferation theory	
	10	Antibody-antigen interaction: Affinity, Avidity	
		Antigen-antibody reactions - Agglutination, Precipitation, ABO	
		blood grouping, RH incompatibility	
III		Immuno-techniques, Applications and therapeutics	12
	11	Immuno-diffusion, immuno-electrophoresis, ELISA, RIA	
	12	Production of polyclonal and monoclonal antibodies - Hybridoma	
		technology	
	13	Antibodies in targeting therapeutic agents- therapeutic antibodies	
	14	Immunity to infections of diseases, Vaccination, Vaccines -	
		Types of vaccines, CAR-T cell therapy	
IV		Autoimmune diseases and Hypersensitivity Reactions	12
	15	Autoimmunity and Autoimmune diseases – Organ specific and	
		Systemic; Mechanisms involved in the development of	
		autoimmune disorders - Hashimoto's thyroiditis; Myasthenia	
		gravis; Rheumatoid Arthritis, Pernicious anemia,	
	16	Hypersensitivity reactions: Types, Asthma	
V	E	Experimental Immunology and Transplantation immunology	12
	17	Experimental immunology: Knock out mice, inbred strains	
	18	Transplantation, Different types of transplants, Stem cell	
		transplantation	
		Transplant rejection: Mechanism and stages of rejection	
		Transplant rejection therapies - Immunosuppressive drugs, Recent	
		advances	
	19	Host-pathogen interactions, Immune evasion strategies of	
		pathogens	

Suggested Readings

- 1. Kuby Immunology, 8th Edition (2018) Jenni Punt, Sharon Stranford, Patricia Jones, and Judith A Owen, WH Freeman
- 2. Roitt's Essential Immunology, 13th Edition (2017) Martin SJ, Burton DR, Roitt IM, and Delves PJ, Wiley-Blackwell
- 3. Cellular and Molecular Immunology, 10th Edition (2021) Abbas AK, Lichtman AH, and Pillai S, Elsevier
- 4. Clinical Immunology, 2022- Rezaei N, Academic Press, Elsevier
- 5. An Introduction to Immunology, 3rd Edition (2016) C V Rao, Narosa Publishing House, New Delhi
- 6. Basics of Biotechnology, 1st Edition (2004) A J Nair; Laxmi Publications, New Delhi
- 7. Immunology, 5th Edition (2007) Joshi, Osama; Agrobios India, New Delhi

No.	Upon completion of the course the graduate will be able to	Cognitiv e Level	PSO addressed
CO- 1	Understand how immune system functions and various cells and organs involved in generating immune functions in the body	R,U	PSO-1
CO- 2	Explain how antibody specificity and diversity generated and its significance in immune functions	R, U	PSO1
CO3	Identify antibody as a tool in immune system and understand antibody mediated immunological detection methods and therapeutic achievements	U,An,Ev	PSO3
CO4	Discuss how autoimmunity develops in the body and risk factors associated with immunological disorders	Ev	PSO3, PSO-1
CO5	Critically analyse and make reports on immunological experiments	Ev	PSO-4

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: I mmunology, Credits: 3:1:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO1	Understand how immune system functions and various cells and organs involved in generating immune functions in the body	PSO-1 PO-1	R,U	F, C	L	-
CO2	Explain how antibody specificity and diversity generated and its	PSO-1 PO-1	R, U		L	-

	significance in immune functions					
CO3	Identify antibody as a tool in immune system and understand antibody mediated immunological detection methods and therapeutic achievements	PSO-3 PO-2	U, An	С	L	
CO4	Discuss how autoimmunity develops in the body and risk factors associated with immunological disorders	PSO-1 PO-1	Ev	F, C	L	-
CO5	Critically analyse and make reports on immunological experiments	PSO-4 PO-1	Ev	F,C,M	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	-	-	-	-	-	2					
CO 2	2		-	-	-	-	2					
CO 3	-	-	3	-	-	-		2	-			
CO 4	3	-	-	-	-	-	3					
CO5				2			3					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar Midterm Exam ٠
- •
- Programming Assignments •
- Final Exam •

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1	1	-	1
CO 2	1	1	-	✓
CO 3	1	1	-	 Image: A set of the set of the
CO 4	1	1	-	✓
CO 5		<i>✓</i>		

Discipline Specific Elective courses 300-399, DSE3(P), DSE4

•

University of Kerala

Discipline	BIOTECH	BIOTECHNOLOGY							
Course	UK5DSEB	UK5DSEBIT302							
Code									
Course	NANOBIO	OTECHNOLOGY	ľ						
Title									
Type of	DSE								
Course									
Semester	V								
Academic	300 - 399								
Level									
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week				
Details		week	per week	per week					
	4	2 hours	1	2	5				
Pre-		of biotechnology							
requisites		for life sciences,							
Course		1			omaterials and their				
Summary					of development of				
	nanobiotechnology as a scientific stream. Subsequently the course covers								
	synthesis methodologies, physical and chemical characterization of								
					fields are elaborated				
					ong foundation in this				
	rapidly pro	ogressing field, w	hose active are	as are all highl	ighted.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to nanoworld	9
	1	History and Development: Lycurgus cup (dichroic glass.), Islamic world Luster, Renaissance pottery, Faraday's Ruby Gold, STM, Feynman's concept, Progress of nanotechnology in various streams of science.	
	2	Classification of Nanomaterials– Based on spatial confinement: 0D, 1D, 2D & 3D Based on structural composition : Organic, Inorganic, Carbon- based &Composite	
	3	 Properties of nanoparticles: a. Physical, structural and chemical properties b. Mechanical, optical, electromagnetic and biological properties 	
	4	Effect of size and shape of nanoparticles : high surface area to volume ratio Surface functionalization	

II		synthesis and characterization of nanoparticles	10					
	5	Synthesis of Nanomaterials:- Top Down & Bottom Upapproaches						
	6	6 Methods of synthesis - Physical, Chemical &Biological (Plant and Microbes)						
	7	Characterization of Nanomaterials: UV-VIS SPEC, XRD, FTIR, EM (TEM, SEM)						
	8	Toxicity evaluation of Nanomaterials – Cytotoxicity and Genotoxicity assays						
III		Applications I	10					
	9	Agriculture: Nanopesticides and Nanofertilizers, Nano- biostimulants and soil enhancers, Nano-enabled technologies for abiotic stress management						
	10	Environmental– Air, Soil &Water Purification, Contamination detection and Remediation. Nanosensors – applications of nanobiosensors: molecular recognition elements, transducing elements						
	11	Food processing and preservation– Detection of food pathogens, Chemicals, Pesticides, Toxins, Adulterants and Residual veterinary antibiotics. Quality Monitoring of vitamin components in food.						
	12	Food packaging- Biodegradable food packaging- Polysaccharides, Proteins, Synthetic polymers, Antimicrobial active packaging, smart and intelligent packaging (labels).						
IV		Applications - II	7					
	13	Medical nanotechnology : Nano systems in medical diagnosis, sensing and imaging						
	14	Nanoparticles in drug targeting and drug delivery						
	15	Nanotechnology in therapy (Hyperthermia, Nano vectors in gene therapy, Cancer therapy and Photodynamic therapy)						
	16	Nanomaterials for biomedical implants, Nano-scaffold in tissue engineering, Nanomaterials as antimicrobials, Recent advances – Nanobots, Nanoflares, Nanoinformatics						
V		Challenges, ethics and future	9					
	17	Toxicity of nanomaterials and possible environmental hazards						
	18	Regulatory acts and ethical issues (SEI) in the use of nanomaterials	1					
	19	Nanobiotechnology as an emerging interdisciplinary research avenue						
	20	Scope and future potential of Nanobiotechnology						

Practicals-30 hours –Essential experiments-15 hours, Group/Individual work-15 hour

Essential experiments

- 1. Synthesize nanoparticles using various methods such as chemical reduction, sol-gel, or biological synthesis.
- 2. Characterize the synthesized nanoparticles using techniques like UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR).
- 3. Functionalize nanoparticles with biomolecules such as proteins, DNA, or antibodies for specific applications.
- 4. Characterize the functionalized nanoparticles to confirm successful attachment of biomolecules using techniques like FTIR, UV-Vis spectroscopy, and zeta potential measurements.
- 5. Assess the toxicity of nanoparticles using in vitro methods
- **6.** Investigate the use of nanomaterials for environmental remediation purposes, such as water purification or pollutant degradation.

Suggested Reading

- 1. Nanomaterials An introduction to synthesis, properties and applications, D. Vollath, Wiley VCH, Second Edition 2013.
- 2. Nanostructures and Nanomaterials Synthesis, Properties and Applications, G. Cao, Imperial College Press 2006.
- 3. Nanostructured materials: Processing, Properties and Potential Applications, Edited by Carl. C. Koch, Noyes Publications, 2002.
- 4. Bionanotechnology, Lesson from Nature– David S Goodsell, Wiley Liss, 2004
- 5. Nanobiotechnology: Concepts, Applications and Perspectives C M Niemeyer and C A Mirkin, 2004

6. Introduction to Bionanotechnology - <u>Young-Chul Lee</u>, <u>Ju-Young Moon</u>, Springer Link, 2020

7. Nanobiotechnology - II more concepts and applications. (2007) - Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.

Course Outcomes

No. Upon completion of the course the graduate will be able t	to Cognitive Level	PSO addressed
---	-----------------------	------------------

CO- 1	Understand the nanoscale functionalities of materials	R, U	PSO-1,2
CO- 2	Understand the classification and characterisation of nanomaterials	R, U	PSO1
C0-3	Understand the various applications of nanomaterials	U, An	PSO3
C0-4	Understand the different ways to use nanotechnology in medicine	U, An	PSO1
CO- 5	Critically analyse the ethics principles based on case studiebsespecially nanobugs gray goo theorem	U, An, E	PSO1
CO- 6	Prepare a case study report on the applications of nanotechnology in agriculture	An, Ap	PSO3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Nanobiotechnology, Credits: 2:1:2(Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Understand the nanoscale functionalities of materials	PSO-1,2	R, U	F, C	L	
2	Understand the classification and characterisation of nanomaterials	PSO1	R, U	С, Р	L	
3	Understand the various applications of nanomaterials	PSO3	U, An	F,C	L	
4	Understand the different ways to use nanotechnology in medicine	PSO1	U	F,C	L	

5	Critically analyse the ethics principles based on case studies especially nanobugsgray goo theorem	PSO1	U, An	F,C	L	
6	Prepare a case study report on the applications of nanotechnology in agriculture	PSO3,4	An, Ap	С, Р	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
C O 1	1	-	-	-	-	-	1							
C O 2	2	3	-	-	-	-	2							
C O 3	-	-	1	-	-	-	1							
C O 4	-	-	2	3	-	-	1							
C O 5	-	1	-	-	-	-	1							
C O 6	-	-	-	3	-	-	3							2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1	1		✓
CO 2	1	1		✓
CO 3	1			✓
CO 4				✓
CO 5				1
CO 6	1			1

Skill enhancement Courses 300-399

.

Discipline	BIOTECHNOLOGY
Course	UK5SECBIT301
Code	

Course	ENTREPRENEURSHIP IN BIOTECHNOLOGY									
Title										
Type of	SEC .	SEC ·								
Course										
Semester	V									
Academic	300 - 399									
Level										
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week					
Details		week	per week	per week						
	3	2	1		3					
Pre-	essentials	of Biotechnology	,							
requisites										
Course	This grad	luate-level cours	e offers a c	comprehensive	exploration of the					
Summary	intersectio	n between biote	chnology and	entrepreneursh	ip. It is designed to					
5				-	necessary to navigate					
	1 1		•		ventures. The course					
	1	1	0	00	in the biotechnology					
		ncluding innovati								
		ions, and ethical i		noucis, initalici	ing, regulatory					
	considerat	ions, and cuncal i	Inplications							

Detailed Syllabus:

Module	Unit	Content	Hrs								
Ι		Introduction to entrepreneurship	9								
	1	Introduction to Entrepreneurship, characteristics of an entrepreneurship, types of entrepreneurships									
	2	Bio-entrepreneurship-concept and significance, objectives of bioentrepreneurship development, Strategy, and operations of bio- sector firms.									
	3	Promotion of entrepreneurship, Factors influencing entrepreneurship.									
II		Development skills for bioentrepreneurship	9								
	4	4 Entrepreneurial skills types - team work and leadership skills, analytical and problem-solving skills, critical thinking skills, branding, marketing, and networking skills.									
	5	Features of a successful Bioentrepreneurship, essential bioentrepreneurial characteristics.									
	6	Startu ps- Definition and types. Role of entrepreneurship development programmes (EDP).									

III		Bioentrepreneurship development & marketing	9
	7	Business plan preparation including statutory and legal requirements, feasibility study and sensing the right business opportunity.	
	8	Organizational structure & Management, Capital management, novel product innovation technology and development	
	9	Concept of a Product - Product mix decisions, Brand Decision.	

	10 Marketing concepts, marketing process, social media for marketing, Marketing Research, and Importance of survey.											
IV	Scope of bioentrepreneurship											
	11	Scope of Bioentrepreneurship in Agriculture, Food and Dairy, Biomedical and healthcare (Molecular diagnostics), biological data analysis and Management.										
	12 Scope of Bioentrepreneurship in Environmental Biotechnology (Biofertilizer, Biofuels, Biological waste management and waste water treatment) and Industrial biotechnology.											
	13	Funding agencies for entrepreneurship in Biotechnology. Regulations for biotech products.										
V	Bioentrepreneurship challenges											
	14	Qualities and functions of Entrepreneurs, Use of IT & AI for business administration, Marketing, and management.										
	15	Various schemes promoting Bioentrepreneurship. Intellectual Property ,Regulatory and ethical challenges.										
	Industry Visits, Case Studies in Biotech Entrepreneurship, Developing a Biotech Business Plan and presentation and Feedback Sessions											

Suggested Reading.

- 1. David H Holt. Entrepreneurship: New Venture Creation. Pearson publications.
- 2. Gupta CB, Khanka SS. Entrepreneurship and Small Business Management, Sultan Chand & Sons.
- 3. Business Modeling for Life Science and Biotech Companies: Creating Value and Competitive Advantage with the Milestone Bridge, Routledge Studies in Innovation,
- 4. Organizations and Technology (2018) Alberto Onetti, & Zucchella, A, CRC press, Taylor and Francis group.
- 5. Biotechnology Entrepreneurship: Starting, Managing, and Leading Biotech Companies. Craig Shimasaki, Academic Press, Elsevier.
- 6. The Dynamics of Entrepreneurial Development and Management. Vasant Desai,

Himalaya Pub. House, ISBN: 9350244543.

Online Resources

Authentic web-based resources like NCBI, PubMed, e-pgpathshala, ScienceDirect etc.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive	PSO addressed

		Level	
CO-1	Explain entrepreneurship, bioentrepreneurship and its significance.	U, E	PSO5
CO-2	List out the skills required for the bioentrepreneurship.	An	PSO1,5
CO-3	Summarize the bioentrepreneurship development process and marketing strategies.	U	PSO5
CO-4	Discuss the Entrepreneurship scope in biological areas.	С	PSO5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Entrepreneurship in biotechnology Credits: 2:1:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Explain entrepreneurship	PSO5	U, E	F, C	L	
CO-2	List out the skills for the bioentrepreneurship.	PSO1,5	An	Р	L	Р
CO-3	Summarize the bioentrepreneurship development process	PSO5	U	F	L	Р
CO-4	Discuss the Entrepreneurship scope	PSO5	С	F	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	
--	------	------	------	------	------	------	-----	-----	-----	-----	-----	-----	--

CO 1	_	-	-	-	3	-			
CO 2	1	-	-	-	3	-			
CO 3	-	-	-	-	3	-			
CO 4	-	-	-	-	3	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			1
CO 2	1			 Image: A set of the set of the
CO 3	1			1
CO 4	1	1		✓

SEMESTER 6

Discipline Specific Core Level 300-399-A9(P),A10,A11

University of Kerala

Discipline	BIOTECH	BIOTECHNOLOGY									
Course	UK6DSCBIT304										
Code											
Course	ANIMAL	BIOTECHNOLO	DGY								
Title											
Type of	DSC										
Course											
Semester	VI										
Academic	300 - 399.										
Level											
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week						
Details		week	per week	per week							
	4	3 hours	1	-	4						
Pre- requisites	Basic know	wledge in Molecu	ılar biology, ar	nd rDNA techno	ology						
Course	This cours	e deals with the a	pplication of b	iotechnologica	l tools and techniques						
Summary		for the advancement of animal science, agriculture, and human welfare. This									
					echnology, molecular						
		nd reproductive b									
	opportunit	ies related to anir	nal health, pro	ductivity, and s	sustainability						

Detailed Syllabus:

Modu	Unit		Content	Hrs				
le								
Ι		Introduction to Animal cell culture						
	1	Ani	mal cell culture: History					
	2		mal cell culture techniques, Primary cell cultures and secondary cell ures, sub culture techniques					
			l lines, Immortalized cell lines, transformed cell lines, Cell strains					
	3	inde	ite and continuous cell lines, Anchorage dependent and anchorage ependent cells practerization of cell lines					
			Animal Cell Culture - Requirements & Scale up	12				
II	4		ic requirements in animal cell culture lab- instruments and ipment					
	5		dia - Media components and physical parameters, Growth factors moting proliferation of animal cell cultures					

		Principles of sterile techniques, Maintenance of animal cell culture,	
		Cryopreservation, and transport of animal cell cultures	
		Cell viability assays	
	6	Scale Up- Monolayer cultures and Suspension cultures, roller bottles	
		and spinner flasks, Micro carrier attached growth.	
		Bioreactors for large scale cultivation of animal cells	
		Gene transfer techniques & Stem cell technology	12
		Gene transfer techniques- Direct methods, Indirect methods- Animal	
III	7	viral vectors	
	8	Transgenesis-Transgenic animals and its practical uses- Animals as	
		Bioreactors	
	9	Stem cell technology: Types of stem cells, Stem cell culture and its	
		clinical uses, Tissue engineered grafts	
	10	Gene therapy	
		Application of Animal Cell Cultures	12
	11	Products of animal cell cultures- hormones (Insulin, growth hormones),	
IV		interferon, t-plasminogen activator, factor VIII, Factor IX	
	12	Production of vaccines in animal cells	
	13	Virus cultivation in animal cell cultures	
	14	Production of polyclonal and monoclonal antibodies-hybridoma	
		technology	
V		Bioethics and Biosafety	12
	15	Ethical issues and concerns in Trasgenics	
		Ethical use of animals in research - Justification for using animals,	
		Considerations in selection of animal models, Alternatives to animal	
		experimentation such as in vitro models, computer simulations etc.	
	16	Laboratory safety practices – importance of following standard	
		operating procedures (SOPs) and safety protocols in animal cell culture	
		laboratories, Personal protective equipment (PPE) requirements for	
l		researchers working with animal cells, Risk assessments to identify	
		potential hazards, Mitigation strategies	

Suggested Readings

- Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications
 7th Edition (2016) Freshney R I, Wiley-Blackwell
- 2. Animal Cell Culture: A Practical Approach, 3rd Edition (2000) Masters J, OUP Oxford
- **3.** Biotechnology-Fundamentals and Application, 3rd Edition (2002) S S Purohit and S K Mathur, Agrobios, India.
- **4.** Introduction to Genetic Engineering & Biotechnology (2010) A J Nair, Jones & Bartlett Publishers, Boston, USA.
- 5. Modern concept of Biotechnology (1998) H D Kumar; Vikas Publishing House Pvt. Ltd., New Delhi.

- 6. Biotechnology, 5th Edition (2009) Smith JE, Cambridge University Press
- 7. Biotechnology (2015) B D Singh, Kalyani Publishers

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand the basic techniques involved in animal cell culture, characteristics, and maintenance of cell lines	U	PSO-1,2
CO- 2	Explain the techniques involved in animal cell cloning and gene transfer methods	U, E	PSO3
CO3	Elaborate the applications of animal cell culture at various field	Ар	PSO1, PSO4
CO4	Discuss the problems associated with animal biotechnology and ethical issues	Ev	PSO2,5
CO5	Explain the basic requirements for the design of an animal cell culture laboratory	U	PSO-1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Animal biotechnology Credits: 3:1:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Understand the basic techniques involved in animal cell culture, characteristics, and maintenance of cell lines	PSO1,2 PO1	U	F, C	L	
CO- 2	Explain the techniques involved in animal cell	PSO 3 PO2	An	F,C	L	

	cloning and gene transfer methods					
CO3	Elaborate the applications of animal cell culture at various field	PSO1,4 PO3	R,U	F	L	-
CO4	Discuss the problems associated with animal biotechnology and ethical issues	PSO2,5 PO8	U	F, C, M	L	-
CO5	Explain the basic requirements for the design of an animal cell culture laboratory	PSO-1 PO-1	U	F, C	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1	3	1	-	-	-	-	2	-	-	-	-	-	-	-
CO 2	-	-	3	-	-	-	-	2	-	-	-	_	-	-
CO 3	1	-	-	3	-	-	-	-	2	-	-	-	-	-
CO 4	-	2	-	-	3	-	-	-	-	-	-	-	-	3
CO 5	3	-	-	-	-	-	2	-	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	>		1	1
CO 2	<i>✓</i>			1
CO 3	1			 Image: A start of the start of
CO 4	1	1		✓
CO5	1	1		✓

University of Kerala

Discipline	BIOTECH	BIOTECHNOLOGY						
Course	UK6DSCI	UK6DSCBIT305						
Code								
Course	PLANT BI	OTECHNOLOGY						
Title								
Type of	DSC							
Course								
Semester	VI							
Academic	300 - 399							
Level								
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	4	2 hours	1	2 hours	5			
Pre-	Cell biolog	y, plant physiology,	molecular biolo	ogy, rDNA techi	nololgy			
requisites								
Course					in-depth exploration of			
Summary					in the context of plant			
					lge, laboratory practical			
	sessions, ar	nd discussions on re-	cent advanceme	ents in the field.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Plant Tissue Culture	6
	1	Introduction to plant tissue culture: Basics of Plant Tissue	
		Culture/Micropropagation, Importance of plant tissue culture, Basic set up of a plant tissue culture lab.	
	2	Fundamental principles of <i>in vitro</i> plant cultures: Major Tools and Instrumentation, Selection of explant, familiarization, and use ofplant growth regulators Composition of tissue culture media- media components and its functions, various types of commercially available media. Sterilization Methods-Steam sterilization, Dry sterilization, Filter sterilization, surface sterilization of explants	
II		Invitro Cultures- Types & Applications	10
	3	Types of <i>in vitro</i> cultures: Callus cultures, cell suspension cultures,	
		organ cultures-root cultures, hairy root cultures, embryo cultures	
	4	Embryogenesis and organogenesis a brief understanding Clonal multiplication and micropropagation- meristem culture, axillary bud and shoot tip culture Anther and pollen culture- production of haploids and its uses	
	5	Plant secondary metabolites production through cell, tissue and organ cultures, Advantages, and disadvantages of in vitro methods	

III		Somaclonal Variation and Somatic Hybridization	10
	6	Somaclonal Variation: Possible reasons for somaclonal variations, Selection of soma clones. Applications of somaclonal variations in agriculture and Horticulture, Merits, and demerits of somaclonal variation	
	7	Protoplast-isolation and culturing of protoplast-principle and application, Regeneration of protoplasts, protoplast fusion and somatic hybridization-selection of hybrid cells	
IV		Genetic engineering and Transgenic plants	10
	8	Methods of gene transfer in plants–Physical, chemical, and biological methods (Agrobacterium mediated and Virus mediated)	
	9	Transgenic crops, Impact of transgenic plants in agriculture and Horticulture, Non-Agricultural applications of transgenic plants- Biopharming-production of therapeutic proteins in transgenic plants, edible vaccines, disease resistant, salt tolerant, pest resistant and stress tolerant crops	
	10	Metabolic engineering of plants for enhanced and controlled production of plant products	
V		Recent advances and Ethical concerns in Plant Biotechnology	9
	11	RNA Interference (RNAi) targeted gene regulation, CRISPR/Cas9 and other genome editing techniques for precise genetic modifications, Synthetic Biology approaches in plant engineering	
	12	Ethical Concerns : Transgene Containment, Loss of Diversity, Sterile Seed technology	

Practical (30Hrs)-[Essential Experiments (15Hrs), Group/Individual Experiments (15 Hrs)]

Essential Experiments

- 1. Preparation of plant tissue culture medium, and sterilization, Preparation of stock solutions of nutrients for MS Media.
- 2. Preparation of MS Media
- 3. Surface sterilization of plant materials for inoculation (implantation in the medium)
- 4. Development of callus cultures and its sub-culturing
- 5. Organogenesis-shoot regeneration, root regeneration, somatic embryogenesis
- 6. Micropropagation of potato/tomato/-Demonstration
- 7. Familiarization of instruments and special equipment's used in the plant tissue culture experiments- Laminar Airflow chamber,
- 8. Protoplast isolation and culturing–Demonstration

Suggested readings

- 1. Plant Biotechnology-Recent Advances (2000), P C Trivedi, Panima Publishing Corporation, New Delhi.
- Introduction to Plant Biotechnology (2020), H S Chawla, Oxford & IBH publishing Co. Pvt. Ltd, New Delhi.

- 3. Basics of Biotechnology (2004), A J Nair; Laxmi Publications, New Delhi.
- 4. An Introduction to Plant Tissue Culture (2016), M K Razdan, Oxford &IBH Publishing Co. Pvt. Ltd., New Delhi
- 5. Role of Biotechnology in Medicinal and aromatic plants (2011), Irfan A Khan and Atiya Khanum, Ukaaz Publications, Hyderabad.
- 6. Plant Cell, Tissue, and Organ Culture-Fundamental Methods (2004) O L Gamborg, G C Phillips Narosa Publishing House, New Delhi.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand fundamentals of plant tissue culture and its tools	U	PSO-1
CO- 2	Evaluate how plant tissue culture techniques is useful in research and agriculture	R, U	PSO3,PSO4
CO3	To understand genetic variation mechanisms and to evaluate its applications in agriculture	U, Ap	PSO-1
CO4	Evaluate how to improve the quality of plants through genetic engineering methods	E, Ap	PSO1,3
CO5	Understand the application of transgenic plants in various fields and awareness about basic ethical concerns related to it	U,AP	PSO2, 3

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Plant biotechnology Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO-1	Understand fundamentals of plant tissue culture and its tools	PSO1, 2 PO 1	U	F, C	L	Р

CO-2	Evaluate how plant tissue culture techniques is useful in research and agriculture	PSO1, 4 PO1, 3	R, U	Р	L	Р
CO3	To understand genetic variation mechanisms and to evaluate its applications in agriculture	PSO1,4 PO3	U, Ap	Р, М	L	
CO4	Evaluate how to improve the quality of plants through genetic engineering methods	PSO2, 3 PO 1,3	E, Ap	Р, М	L	Р
CO5	Understand the application of transgenic plants in various fields and awareness about basic ethical concerns related to it	PSO3,5 PO 6	U	С	L	-

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
C O 1	3	1	-	-	-	-	2	-	-	-	-	-	-	-
C O 2	2	-	-	2	-	-	2	-	1	-	-	-	-	-
C O 3	2	-	-	2	-	-	-	-	2	-	-	-	-	-

C O 4	-	2	2	-	-	-	3	-	2	-	-	-	-	-
C O 5	-	-	2	-	2	-	-	-	-	-	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar/Midterm Exam
- Programming Assignments /Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1	1	~	1
CO 2	1	1	1	✓
CO 3	1	1		✓
CO 4		1	1	✓
CO 5	1	1		1

University of Kerala

Discipline	BIOTECH	BIOTECHNOLOGY						
Course	UK6DSCI	UK6DSCBIT306						
Code								
Course	ENVIRON	MENTAL BIOTEC	CHNOLOGY					
Title								
Type of	DSC							
Course								
Semester	VI							
Academic	300 - 399							
Level								
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	4	3 hours	1		4			
Pre- requisites	Basic Biote	chnology, Microbi	ology					
Course	Environm	ental Biotechnolo	gy at the gra	duate level pr	obes deeper into the			
Summary				-	ddress environmental			
5	11	U U	1 .	1	uch as microbiology,			
		ē	1		0.			
					tainable solutions for ce management.			
	environme	ental conservation	, pollution cont	trol, and resour	ce management.			

Detailed Syllabus:

Module	Unit	Content	Hrs						
Ι		Introduction to Ecosystem and Environment	12						
	1	1 Environment-Definition, components, and inter-relationships							
	2	Brief idea on Ecosystems and ecology							
	3	Ecads and Ecotypes							
	4	Biodiversity and Biosphere							
II		Environment Pollution	12						
	5	Pollution: Sources and types							
		General characteristics of domestic wastes, community wastes,							
		agricultural wastes, electronic wastes-effect of solid wastes in the							
		environment							
	6	Air Pollution: Natural and anthropogenic sources of pollution, Effect							
		of air pollution, Control measures							
	7	Water pollution: Organic load in aquatic systems, Measuring BOD							
		and COD, Assessing microbial quality of water							

5	Biotechnology and pollution control: Biofiltration and bioreactors for air pollution control	
	Monitoring and assessment of water and air quality using biotechnological tools Treatment of municipal wastes and hazardous industrial effluents - aerobic and anaerobic methods, Biofiltration, Biological Scrubbers/ bio trickling filters	

		Carbon sequestration techniques					
		Biotechnological solutions for reducing greenhouse gas emissions					
III		Renewable and Non-renewable Energy	12				
	9	Renewable and non-renewable energy resources: conventional fuels					
		and their environmental impacts (fire wood, animal oils, coal,					
		petroleum)					
	10	Non-conventional energy sources					
		Biomass: utilization of biomass as energy source- application of					
	microbes in production of fuels from biomass-biogas andmethanogenic						
		bacteria, microbial hydrogen production, production of bioethanol, and					
		other types of chemicals from biomass and agricultural wastes, the					
		gasohol experiment					
		Algal biofuels: cultivation, harvesting, and processing					
		Vegetable oils as engine fuels, energy crops-jojoba; Possibility of					
		plant-based petroleum industry and biofuels.					
IV		Bioremediation and Biodegradation	12				
		Microbial diversity and ecosystem functioning, Microbial interactions					
	in natural and engineered environments, Microbial metabolism and						
		nutrient cycling					
		Types of pollutants and contaminants					
		Bioremediation- strategies: bioaugmentation, biostimulation,					
		phytoremediation, etc.					
		Case studies of successful bioremediation projects					
		Biodegradation - microorganisms used for bioremediation, and					
		applications, Mechanism of pollutant degradation by microbes					
	11	approactions internation of pondant degradation by merodes					
	11	Biological control of pests and insects, Biopesticides- Bacillus					
		thuringiensis, bioherbicides;					
		Application of biotechnology in the production of biofertilizers and					
		nitrogen fixation – nitrogen fixing microorganisms, mycorrhiza					
	12	Mineral Biotechnology- Enrichment of ores by microorganisms					
		(bioaccumulation and biomineralisation); Bio-assessment of					
		environmental quality					
V		Environment Legislations	12				

13	Environment laws: The Environment Protection act,1986 The wildlife preservation act,1982 The wildlife protection act,1972 The biological diversity act,2002	
----	--	--

The biodiversity Rules,2004	
National green tribunal act,2010	

Familiarize with the following Techniques

- 1. Microbiological assessment of drinking water- water from well, river, water supply department and packaged drinking water
- 2. Isolation of microbes from the environment- from air, soil, floor of the lab, from water.
- 3. Assessment of organic load in aquatic systems and factory effluent- Determination of BOD and COD.
- 4. Biogas production by methanogenic bacteria or by mixed culture in a biogas plant.
- 5. Isolation of nitrogen fixing bacteria from leguminous plants
- 6. Determination of NP and K in biofertilizers

Suggested Readings

- 1. Environmental Biotechnology (1999) Alan H Scragg; Longman, England
- 2. Biotechnology-Fundamentals and Application (2002) S S Purohit and S K Mathur; Agrobios, India
- 3. Biotechnology (2015) B D Singh, Kalyani Publishers
- Biological wastewater treatment (1998) Grady C P L, G T Daigger, H C Lim; CRC Press
- 5. Environmental Issues and Options (2007) Mishra C S; Daya Publishing House
- 6. Biodiversity- Status and Prospects (2005) Pramod Tandon, Manju Sharma, Renu Swarup; Narosa Publishing House, New Delhi
- 7. Ecology (2006) Subrahmanyam N S, A V S S Sambamurty; Alpha Science International Ltd.
- 8. Biotechnology (2020) U Satyanarayana, Books and Allied (P) Ltd.
- 9. Microbiology (2007) Prescott L. M., Harley, J. P., and Klein D. A; Mc Graw Hill, New York

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Understand the concept of environment, ecosystem, biodiversity, and biosphere	U	PSO-1,PSO-2

CO- 2	Identify types and key sources of environmental pollution, and understand various biotechnological control measures for pollution	R, U	PSO 2, PSO- 5
CO3	Comprehensive understanding on various energy sources and evaluation of strategies for green energy production	U,E	PSO-3, PSO-5
CO4	Exploiting microbes as a solution for environmental problems as well as energy crisis	U, Ap	PSO3,PSO- 5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Environmental biotechnology Credits: 3:1:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Understand the concept of environment, ecosystem, biodiversity, and biosphere	PSO-1,2 PO 1	U	F, C	L	-
CO- 2	Identify types and key sources of environmental pollution, and understand various biotechnological control measures for pollution.	PSO 2, 5 PO 8	R, U	С, Р	L	Р
CO3	Comprehensive understanding on various energy sources and evaluation of strategies for green energy production	PSO 3,5 PO 6	U, E	F	L	-
CO4	Exploiting microbes as a solution for environmental problems as well as energy crisis	PSO3,5 PO6	U, Ap	Р	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
C O 1	3	2	-	-	-	-	3	-	-	-	-	-	-	-
C O 2	-	2	-	-	3	-	-	-	-	-	-	-	-	3
C O 3	-	-	2	-	2	-	-	-	-	-	-	2	-	-
C O 4	-	-	2	-	3	-	-	-	-	-	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1		1	1
CO 2	1			1
CO 3	1			✓
CO 4		1	✓	1

Discipline Specific Elective courses 300-399, DSE5(P), DSE6

University of Kerala

.

University of Kerala

Discipline	BIOTECHNOLOGY								
Course	UK6DSEBIT327								
Code									
Course	CLINICA	L RESEARCH A	ND DATA MA	ANAGEMENT					
Title									
Type of	DSE								
Course									
Semester	VI								
Academic	300 - 399								
Level			ſ						
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week				
Details		week	per week	per week					
	4	2	1	2	5				
Pre-	basics of C	Clinical Practices,	fundamentals of	of Clinical Data	a Management				
requisites		,			C				
Course	This cours	e provides an in-	depth exploration	ion of the princ	iples and practices of				
Summary	clinical rea	search and data r	nanagement w	vithin the conte	ext of healthcare and				
	pharmac	eutical industries	. It covers th	e essential con	mponents of planning,				
	conducti	ng, and analyzing	g clinical trials	s, as well as th	ne management of data				
	U	•	-		l gain practical skills in				
				naging data, e	nsuring regulatory				
	compliar	nce, and interpreti	ng results.						

.

Detailed Syllabus:

Module	Unit	Content	Hrs		
Ι		Introduction to Clinical Research & Trials	6		
	1	An overview of clinical Research, clinical trials, study designs and phases of clinical trials, Introduction to biotechnology applications in clinical research			
	2	Clinical trial protocols, stake holders in clinical trial projects, Serious adverse events.			
	3	Ethics Committee role in reviewing research proposals and ensuring ethical conduct.			
II		Good clinical Practices	10		
	4	Good Clinical Practices: Comprehending the principles of ICH GCP, including participant protection, data quality and ethical conduct.			
	5	ICMR guidelines for Biomedical Research on Human Subjects			
	6	Responsibility of Clinical Research Professionals: (Investigator, Project Manager, Regulatory Affairs Associate, Medical Writer, Clinical Research Associate, Clinical Research Coordinator and Safety Report Associate).			
III	Clinical Research Regulations				
	7	Regulation in Clinical Research- Drug and cosmetic act, FDA, Schedule-Y- Ethics Committee and their responsibilities			
	8	Clinical Research Regulatory Submission & approval Process- DCGI submission procedure.			
	9	Other Regulatory authorities- EMEA, MHRA, PhRMA.			
	10	An overview of Drug development process and pharmacovigilance			
IV		Clinical Data Management	10		
	11	Data Collection Methods and Instruments - Clinical Trial Design and Protocol Development- Phases of clinical trials, Study design: randomized controlled trials, observational studies, etc. Protocol development and study endpoints, Sample size determination and statistical considerations Clinical data management systems- Electronic data capture, System			
		validation, Test procedures, change control, coding dictionaries, Migrating and archiving Legacy Data.			
	12	Clinical Data Management process- Data management Plan, CRF design considerations, Database design considerations, Study setup, Entering Data, Tracking CRF pages, cleaning data, Managing Lab			

		Data, Identifying and Managing the discrepancies, Collecting Adverse Event Data, Coding Reported terms, creating report and Transferring data, Closing study.	
V		Biostatistics & Pharmacovigilance.	9
	13	Regulatory Requirements and Ethical Considerations Data Management and Quality Assurance .Biostatistics in Clinical Studies and Data analysis.	
	14	Drug development phases, Quality control and quality assurance of clinical research procedures	
	15	Safety specification and risk management palan, Guidelines in Phamacovigilance.	

Practical 30Hours-Essential Experiments-15 hours, Group/Individual work-15 hours

Essential Experiments

- 1. Design a mock clinical trial for a hypothetical drug or therapy. outline inclusion/exclusion criteria, endpoints, randomization procedures, sample size determination, and ethical considerations.
- 2. create a detailed protocol including study objectives, study population, intervention, study procedures, and statistical analysis plan.
- 3. Familiarize with electronic data capture (EDC) systems commonly used in clinical trials. ,enter mock patient data into these systems.
- 4. design case report forms (CRFs) for data collection, emphasizing the importance of clear and consistent data entry.
- 5. Provide datasets from past clinical trials and ask students to perform basic statistical analysis using software like R or SPSS

Suggested Readings

- 1. An introduction to clinical research by Piers Page, James Carr, OUP oxford Publication
- 2. Lawrence MF, Curt DF, David LD (2010) Fundamentals of clinical trials Tom Brody.

3. Clinical Research Principles Practices Perspectives by Mittal and Niti and Bikash Medhi, BSP Books

- 4. Clinical Trials by Alice Kuruvila, Paras Medical Publisher.
- 5. Textbook of Clinical Research by Vikas Dhikav AITBS Publishers.

6. Textbook On Clinical Research A Guide for Aspiring Professionals and Professionals by Guru Prasad Mohanta, Pharmamed Press.

Online Resources

Authentic web-based resources like NCBI, PubMed, e-pgpathshala, ScienceDirect etc.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Summarize clinical research and phases of clinical trials	U	PSO4
CO- 2	Outline the good clinical practices and explain the drug development process.	U, E	PSO4,5
CO- 3	Categorize the responsibility of clinical research professionals.	А	PSO2
CO- 4	Develop knowledge on basics of clinical data management process and clinical research regulations	А	PSO2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Clinical research and data management Credits: 3:1:2 (Lecture:Tutorial:)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Summarize clinical research and phases of clinical trials	PSO4	U	F, C	L	
CO- 2	Outline the good clinical practices and explain the drug development process.	PSO4,5	U, E	Р	L	
CO- 3	Categorize the responsibility of	PSO2	А	F	L	

	clinical research professionals.					
CO- 4	Develop knowledge on basics of clinical data management process and clinical research regulations	PSO2	Α	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	-	2	-	-						
CO 2	-	-	-	2	2	-						
CO 3	-	2	-	-	-	-						
CO 4	-	2	-	-	-	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments

• Final Exam

•

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			1
CO 2	1			1
CO 3	1			1
CO 4		\		✓

University of Kerala

Discipline	BIOTECH	BIOTECHNOLOGY						
Course	UK6DSEB	UK6DSEBIT328						
Code								
Course	FORENSI	C BIOTECHNO	LOGY					
Title								
Type of	DSE							
Course								
Semester	VI							
Academic	300 - 399							
Level								
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week			
Details		week	per week	per week				
	4	2 hours	1	2 hours	5			
Pre-								
requisites								

Course	Forensic biotechnology is an interdisciplinary field that applies principles of					
Summary	biology, genetics, and technology to analyze evidence in criminal					
	investigations. This graduate-level course covers advanced topics in forensic					
	biotechnology, including DNA analysis, bioinformatics, forensic pathology,					
	and molecular techniques used in crime scene investigation.					

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Forensic Biotechnology	6
	1		
		Overview of forensic science and its applications, Historical	
		development and significance of forensic biotechnology	
		Ethics and legal issues in forensic investigations	
	2	Mendelian inheritance patterns	
		Population genetics and forensic DNA databases	
	3	Kinship analysis and paternity testing	
		Genetic markers for individual identification	
Π		DNA Analysis Techniques	10
	4	Polymerase chain reaction (PCR) and its applications in forensic	
		DNA analysis	
		Short tandem repeat (STR) analysis and DNA profiling	
		Mitochondrial DNA analysis and its role in forensic	
		identificationy, Y-chromosomal and mitochondrial DNA analysis	
		Next-generation sequencing (NGS) in forensic genomics, Forensic	
		Epigenetics, Microbial signatures in forensic investigations	

	5	Molecular Techniques in Crime Scene Investigation	
		Forensic analysis of biological fluids: blood, saliva, semen, and urine Hair and fiber analysis using molecular techniques Forensic odontology and its role in human identification Case studies and practical applications of molecular techniques in crime scene investigation	
	6	Comparison of traditional and advanced DNA extraction techniques	
	7	Mass spectrometry techniques in forensic proteomics Protein profiling for identification and characterization, bioterrorism detection	
III		Bioinformatics in Forensic Investigations	10
	8	Introduction to bioinformatics tools and databases Sequence alignment and analysis for forensic DNA identification Computational methods for forensic DNA profiling and ancestry inference	
	9	Principles and applications of Next generation sequencing in forensic genetics	

r	1		1
		Targeted sequencing vs. whole-genome sequencing	
		Data analysis and interpretation in forensic NGS,: Forensic DNA	
		Profiling Techniques	
IV		Forensic Pathology and Serology	10
	10	Understanding the role of forensic pathology in criminal	
		investigations	
		Postmortem changes and estimation of time since death	
		Bloodstain pattern analysis and serological techniques	
		Forensic entomology and its application in estimating time of death	
	11	Advanced Topics in Forensic Biotechnology	
		Forensic DNA databases and their role in criminal investigations	
		Emerging technologies in forensic biotechnology: single-cell	
		analysis, microfluidics, and nanotechnology	
		Forensic epigenetics: DNA methylation analysis for forensic	
		applications	
		Ethical considerations and controversies in forensic biotechnology	
		research	
V	Em	erging Trends and Technologies in Forensic Molecular Biology	9
	12	CRISPR-based forensic applications, Nanotechnology in forensic	
		analysis	
	13	Ethical implications and future directions in forensic molecular	
		biology	
	14	Analytical techniques for detecting drugs and poisons	
	15	Insect evidence in crime scene analysis	
	10	motor e rachere in ernie seene anarysis	

Practicals-30 hours, Essential Experiments-15 hours, Individual /Group work-15 Hours

Essential Experiments

- 1. Introduce students to bioinformatics tools and databases for analyzing DNA sequences.
- 2. analyze DNA sequences and compare them to reference sequences in databases.
- 3. Explore the use of computational methods for predicting phenotype from genotype (e.g., eye color, ancestry).
- 4. Perform microbial identification using techniques like 16S rRNA gene sequencing or DNA fingerprinting methods.
- 5. Prepare simulated biological samples (e.g., blood, urine) spiked with common drugs or toxins.
- 6. Use techniques like High-Performance Liquid Chromatography (HPLC) or Gas Chromatography-Mass Spectrometry (GC-MS) to detect and quantify the substances present.

Suggested Reading

- 1. Butler, J. M. (2015). Forensic DNA typing: Biology, technology, and genetics of STR markers (2nd ed.). Academic Press.
- 2. Carracedo, A., & Schneider, P. M. (Eds.). (2009). Forensic DNA profiling protocols. Humana Press.
- 3. Budowle, B., Schutzer, S. E., Breeze, R. G., & Keim, P. (2005). Microbial forensics. Academic Press.
- 4. Goodwin, W., & Linacre, A. (2019). Forensic DNA analysis: A laboratory manual. Academic Press.
- 5. Houck, M. M., & Siegel, J. A. (Eds.). (2010). Fundamentals of forensic science (2nd ed.). Academic Press.
- 6. Primrose, S. B. (2001). Forensic science: An introduction to scientific and investigative techniques (2nd ed.). CRC Press.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO1	Demonstrate a comprehensive understanding of the principles and techniques used in forensic biotechnology.	U	PSO-1
CO2	Apply advanced molecular techniques for DNA analysis and interpretation of forensic evidence	R, U	PSO-1,3
CO3	Evaluate bioinformatics tools and databases for forensic DNA profiling and analysis.	Ü,Ap	PSO-3,4

CO4	Analyze and interpret forensic pathology findings in criminal investigations	U, An	PSO-3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Forensic biotechnology Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	PO/	Cognitive	Knowledge	Lecture (L)	Practical
No.		PSO	Level	Category	/Tutorial (T)	(P)

CO1	Demonstrate a comprehensive understanding of the principles and techniques used in forensic biotechnology.	PSO-1	U	F,	L	
CO2	Apply advanced molecular techniques for DNA analysis and interpretation of forensic evidence	PSO- 1,3	R, U	Р	L	
CO3	Evaluate bioinformatics tools and databases for forensic DNA profiling and analysis.	PSO- 3,4	U,Ap	F	L	
	Analyze and interpret forensic pathology findings in criminal investigations	PSO- 3,4	U, An	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-						
CO 2	2	3	-	-	-	-						
CO 3	-	-	1	-	-	-						

CO 4	-	-	2	3	-	-			
CO 5	-	1	-	-	-	-			
CO 6	-	-	-	3	-	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			<i>✓</i>
CO 2	1			✓
CO 3	1			<i>✓</i>
CO 4		1		<i>✓</i>
CO 5		1		✓
CO 6			1	

Skill Enhancement Courses

University of Kerala

University of Kerala

Discipline	BIOTECH	INOLOGY			
Course	UK6DSCI	BIT303			
Code					
Course	CLINICA	L RESEARCH A	ND DATA M	ANAGEMENT	[
Title					
Type of	SEC				
Course					
Semester	VI				
Academic	300 - 399.				
Level					
Course	Credit	Lecture per	Tutorial	Practical	Total Hours/Week
Details		week	per week	per week	
	3	2	1		3
Pre-	basics of C	linical Practices,	fundamentals.	of Clinical Dat	a Management management of data
requisites	generated	throughout the res	search process	. Students will	gain practical skills in
Course	This cours	e provides anin-	lepth explorat	ion of the princ	gain practical skills in the sand practices of ext of healthcare and
Summary	elinisalare	search interpletant	papagement v	vithin the cont	ext of healthcare and
	pharmaceu	utical industries.	It covers the	essential com	

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Clinical Research & Trials	9
	1	An overview of clinical Research, clinical trials, study designs and phases of clinical trials, Introduction to biotechnology applications in clinical research	
	2	Clinical trial protocols, stake holders in clinical trial projects, Serious adverse events.	
	3	Ethics Committee role in reviewing research proposals and ensuring ethical conduct.	
II		Good clinical Practices	9
	4	Good Clinical Practices: Comprehending the principles of ICH GCP, including participant protection, data quality and ethical conduct.	
	5	ICMR guidelines for Biomedical Research on Human Subjects	
	6	Responsibility of Clinical Research Professionals: (Investigator, Project Manager, Regulatory Affairs Associate, Medical Writer, Clinical Research Associate, Clinical Research Coordinator and Safety Report Associate).	
III		Clinical Research Regulations	9
	7	Regulation in Clinical Research- Drug and cosmetic act, FDA, Schedule-Y- Ethics Committee and their responsibilities	
	8	Clinical Research Regulatory Submission & approval Process- DCGI submission procedure.	

	9	Other Regulatory authorities- EMEA, MHRA, PhRMA.				
	10	An overview of Drug development process and pharmacovigilance				
IV		Clinical Data Management				
	11	Data Collection Methods and Instruments - Clinical Trial Design and Protocol Development- Phases of clinical trials, Study design: randomized controlled trials, observational studies, etc. Protocol development and study endpoints, Sample size determination and statistical considerations Clinical data management systems- Electronic data capture, System validation, Test procedures, change control, coding dictionaries, Migrating and archiving Legacy Data.				
	12	Clinical Data Management process - Data management Plan, CRF design considerations, Database design considerations, Study setup, Entering Data, Tracking CRF pages, cleaning data, Managing Lab Data, Identifying and Managing the discrepancies, Collecting				

	Adverse Event Data, Coding Reported terms, creating report and Transferring data, Closing study.						
V		Biostatistics & Pharmacovigilance.	9				
	13	Regulatory Requirements and Ethical Considerations Data Management and Quality Assurance .Biostatistics in Clinical Studies and Data analysis.					
	14	Drug development phases, Quality control and quality assurance of clinical research procedures					
	15	Safety specification and risk management palan, Guidelines in Phamacovigilance.					

Suggested Readings

1.An introduction to clinical research by Piers Page, James Carr, OUP oxford Publication

2.Lawrence MF, Curt DF, David LD (2010) Fundamentals of clinical trials Tom Brody.

3. Clinical Research Principles Practices Perspectives by Mittal and Niti and Bikash Medhi, BSP Books

4. Clinical Trials by Alice Kuruvila, Paras Medical Publisher.

5. Textbook of Clinical Research by Vikas Dhikav AITBS Publishers.

6. Textbook On Clinical Research A Guide for Aspiring Professionals and Professionals by Guru Prasad Mohanta, Pharmamed Press.

Online Resources

Authentic web-based resources like NCBI, PubMed, e-pgpathshala, ScienceDirect etc.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO- 1	Summarize clinical research and phases of clinical trials	U	PSO4

CO- 2	Outline the good clinical practices and explain the drug development process.	U, E	PSO4,5
CO- 3	Categorize the responsibility of clinical research professionals.	А	PSO2
CO- 4	Develop knowledge on basics of clinical data management process and clinical research regulations	А	PSO2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course	: Clinical research a	nd data management	Credits: 2:1:0	(Lecture:Tutorial:)
--------------------	-----------------------	--------------------	----------------	---------------------

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
CO- 1	Summarize clinical research and phases of clinical trials	PSO4	U	F, C	L	
CO- 2	Outline the good clinical practices and explain the drug development process.	PSO4,5	U, E	Р	L	
CO- 3	Categorize the responsibility of clinical research professionals.	PSO2	A	F	L	
CO- 4	Develop knowledge on basics of clinical data management process and clinical research regulations	PSO2	А	С	L	

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	-	2	-	-						
CO 2	-	-	-	2	2	-						
CO 3	-	2	-	-	-	-						
CO 4	-	2	-	-	-	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			✓
CO 2	1			✓
CO 3	1			✓
CO 4		1		 Image: A set of the set of the